Fundametals of Rendering Radiometry / Photometry

"Physically Based Rendering" by Pharr \& Humphreys
-Chapter 5: Color and Radiometry
-Chapter 6: Camera Models - we won't cover this in class

Pertinent Questions

- Nature of light and how it is:
- Measured
- Characterized / recorded
- (local) reflection of light
- (global) spatial distribution of light

Spectral Power Distributions

e.g., Fluorescent Lamps

Tristimulus Theory of Color

Metamers: SPDs that appear the same visually

Color matching functions of standard human observer International Commision on Illumination, or CIE, of 1931

These color matching functions are the amounts of three standard monochromatic primaries needed to match the monochromatic test primary at the wavelength shown on the horizontal scale." from Wikipedia "CIE 1931
782

Optics

Three views

-Geometrical or ray

- Traditional graphics
- Reflection, refraction
- Optical system design
-Physical or wave
- Dispersion, interference
- Interaction of objects of size comparable to wavelength
-Quantum or photon optics
- Interaction of light with atoms and molecules

782

Nature of Light

- Wave-particle duality
- Light has some wave properties: frequency, phase, orientation
- Light has some quantum particle properties: quantum packets (photons).
- Dimensions of light
- Amplitude or Intensity
- Frequency
- Phase
- Polarization

782

Radiometry

- Science of measuring energy (light in our case)
- Analogous science called photometry is based on human perception.

What Is Light?

- Light - particle model (Newton)
- Light travels in straight lines
- Light can travel through a vacuum (waves need a medium to travel in)
- Quantum amount of energy
- Light - wave model (Huygens): electromagnetic radiation: sinusiodal wave formed coupled electric (E) and magnetic (H) fields

782

Nature of Light

- Coherence - Refers to frequencies of waves
- Laser light waves have uniform frequency
- Natural light is incoherent- waves are multiple frequencies, and random in phase.
- Polarization - Refers to orientation of waves.
- Polarized light waves have uniform orientation
- Natural light is unpolarized - it has many waves summed all with random orientation
- Focused feflected light tends to be parallel to surface of reflection

782

Radiometry Questions

- Measure energy leaving a light source, as a function of direction
- Measure energy hitting a surface, in a particular direction
- Measure energy leaving a surface, in a particular direction

The energy is light, photons in this case 782

Solid Angle

First, need to define 3D angular units

782

Power on a surface

Flux
Radiant power passing through a surface

Flux density
Radiant power per unit area on a surface

Incident flux density
Flux density arriving at a surface in all directions

Exitant flux density (aka Radiosity)

Flux density leaving from a surface in all directions

Radiometry - Quantities

- Energy Q
- Power Φ
- Energy per time
- Irradiance E and Radiosity B
- Power per area
- Intensity I
- Power per solid angle
- Radiance L
- Power per projected area and solid angle

Power in a direction

Radiant intensity	Power per unit solid angle
Radiance	Power radiated per unit solid angle per unit projected source area

for rendering:
important when considering the direction toward the camera

782

Terms \& Units

Radiant Energy - Q

- Think of photon as carrying quantum of energy
- Wave packets
- Total energy, Q, is then energy of the total number of photons
- Units - joules or eV

Radiant Flux Area Density or simply flux density

- Area density of flux $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
- $u=$ Energy arriving/leaving a surface per unit time interval
- dA can be any 2D surface in space
- E.g. sphere: $\quad u=\frac{\Phi}{4 \pi r^{2}}$
$u=\frac{d \Phi}{d A}$

Radiosity or Radiant Exitance B

- Power per unit area leaving surface
- Also known as Radiosity
- Same unit as irradiance, just direction changes

$$
B=\frac{d \Phi}{d A}
$$

Power - Φ

- Flow of energy (important for transport)
- Also - radiant power or flux.
- Energy per unit time (joules/s = eV/s)
- Unit: W - watts
- $\Phi=d Q / d t$
- Falls off with square of distance

782

Irradiance E

- Power per unit area incident on a surface

$$
E=\frac{d \Phi}{d A}
$$

782

Intensity I

- Flux density per unit solid angle $I=\frac{d \Phi}{d \omega}$
- Units - watts per steradian
- Radiant intensity
- "intensity" is heavily overloaded. Why?
- Power of light source
- Perceived brightness

Solid Angle

- Size of a patch, dA , in terms of its angular direction, is $\quad d A=(r \sin \theta d \phi)(r d \theta)$
- Solid angle is

$$
d \omega=\frac{d A}{r^{2}}=\sin \theta d \theta d \phi
$$

Hemispherical Projection

- Use a hemisphere H over surface to measure incoming/outgoing flux
- Replace objects and points with their hemispherical projection

782

Radiance L

- Power per unit projected area per unit solid angle.
- Units - watts per (steradian m^{2})
- We have now introduced projected area, a cosine term.

$$
L=\frac{d^{2} \Phi}{d A_{p} d \omega} \quad L=\frac{d^{2} \Phi}{d A \cos \theta d \omega}
$$

Solid Angle (contd.)

- Solid angle generalizes angle!
- Steradian
- Sphere has 4π steradians! Why?
- Dodecahedron - 12 faces, each pentagon.
- One steradian approx equal to solid angle subtended by a single face of dodecahedron

Isotropic Point Source

$$
I=\frac{d \Phi}{d \omega}=\frac{\Phi}{4 \pi}
$$

- Even distribution over sphere

Projected Area

$$
A_{p}=A(N \cdot V)=A \cos \theta
$$

782

Why the Cosine Term?

- Foreshortening is by cosine of angle.
- Radiance gives energy by effective surface area.

782

Irradiance from Radiance

$$
E(p, n)=\int_{\Omega} L_{i}(p, \omega)|\cos \theta| d \omega
$$

- I $\cos \theta l d \omega$ is projection of a differential area
- We take Icos $\theta 1$ in order to integrate over the whole sphere

Bidirectional Reflection Distribution Functions

Reciprocity: $\quad f_{r}\left(p, \omega_{i}, \omega_{o}\right)=f_{r}\left(p, \omega_{o}, \omega_{i}\right)$

Energy Conservation:

$$
\int_{H^{2}(n)} f_{r}\left(p, \omega_{o}, \omega^{\prime}\right) \cos \theta \prime d \omega \prime \leq 1
$$

Incident and Exitant Radiance

- Incident Radiance: $L_{i}(\mathrm{p}, \omega)$
- Exitant Radiance: $\mathrm{L}_{0}(\mathrm{p}, \omega)$

Note that direction is always away from point

- In general: $\quad L_{i}(p, \omega) \neq L_{o}(p, \omega)$
- p - no surface, no participating media

$$
L_{i}(p, \omega)=L_{o}(p,-\omega)
$$

782

Reflected Radiance \& BRDFs

$d L_{o}\left(p, \omega_{o}\right) \propto d E\left(p, \omega_{i}\right)$

$f_{r}\left(p, \omega_{o}, \omega_{i}\right)=\frac{d L_{o}\left(p, \omega_{o}\right)}{d E\left(p, \omega_{i}\right)}=\frac{d L_{o}\left(p, \omega_{o}\right)}{L_{i}\left(p, \omega_{i}\right) \cos \theta_{i} d \omega_{i}}$

782

Bidirectional Scattering Distribution Functions

Bidirectional Reflection Distribution Function (BRDF)

$$
f_{r}\left(p, \omega_{o}, \omega_{i}\right)
$$

Bidirectional Transmittance Distribution Function (BTDF)

$$
f_{t}\left(p, \omega_{o}, \omega_{i}\right)
$$

Bidirectional Scattering Distribution Function (BSDF)

$$
f\left(p, \omega_{o}, \omega_{i}\right)
$$

782

Bidirectional Scattering

Distribution Functions

$d L_{o}\left(p, \omega_{o}\right)=f\left(p, \omega_{o}, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}$
$L_{o}\left(p, \omega_{o}\right)=\int_{S^{2}(n)} f\left(p, \omega_{o}, \omega_{i}\right) L_{i}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}$

