
CSE782

Ray Intersection

Acceleration

Readings
Chapter 2 – Geometry & Transformations
Chapter 3 – Shapes
Chapter 4 – Primitives & Intersection Acceleration

Covers basic math and
PBRT implementation:
read on your own

We’ll cover this in class

CSE782

Reading

Chapter 2: Geometry and Transformations

2.1-2.5 Review basic geometry

2.6 3D Bounding boxes in PBRT

2.7-2.8 Transformation & applying them in PBRT

2.5.1 & 2.9 Differential geometry

CSE782

Reading

Chapter 3: Shapes

3.1 Basic PBRT shape interface

3.2-3.5 Specific shapes - quadrics

3.6 Triangles and meshes

3.7 Subdivision surfaces

CSE782

Image
plane

Eye

Ray Tracing

• Shoot a ray through each pixel;

• Find first object intersected by ray

Compute ray. (More linear algebra.)

Compute ray-object intersection.

Spawn more rays for reflection and refraction

CSE782

Ray Tracing Architecture

Scene

Camera

Image

intersect

Parse

Shadow, reflection,

refraction rays

Eye rays
Rays

Primitives

Sample
Generator

Film

Integrator

LRT

Radiance

TIFF

Shape

Lights

Material

Image

CSE782

Optimizing Ray Tracing

• Main computation load is ray-object intersection

• 50-90% of run time when profiled

• Test for possible intersection before committing to

computing intersections

CSE782

Consider this

CSE782

Complexity !

• I rays or pixels in image

• N objects

• O(NI)

• Can we do O(I logN) ?

CSE782

Ray Intersection Acceleration

Ray Tracing Acceleration Techniques

Faster Intersections Fewer Rays Generalized Rays

Faster

 ray-object

intersections

Fewer

ray-object

intersections

Examples:

Object bounding

volumes

Efficient intersectors for

parametric surfaces,

fractals, etc.

Examples:

Bounding volume

hierarchies

Space subdivision

Directional

techniques

Examples:

Adaptive tree-depth

control

Statistical optimizations

for anti-aliasing

Examples:

Beam tracing

Cone tracing

Pencil tracing

CSE782

Primitives

Pbrt and Intersections

• Primitive base class

• Shapes are subclasses of primitive

• Aggregate class

• Methods

– WorldBound

– CanIntersect

– Intersect

– IntersectP

– Refine

• First four return Intersection
structures

• Last returns Primitives

Shapes

Lights

Materials

CSE782

Pbrt and Intersections

WorldBound Returns a bounding box in world space

Intersect
Return !true" if an intersection and an
intersection structure

IntersectP
Return !true" if an intersection occurs but
does not return an intersection structure

Refine
If non-intersectable, refines shape into (some)

intersectable new shapes

CSE782

Intersection Geometry

• Shape independent representation for intersections

• DifferentialGeometry Intersection::dg

– Point P

– Normal N

– Parametric (u,v)

– Partial derivatives

Tangents: dpdu, dpdv

change in normal: dndu, dndv

CSE782

Speeding up Intersection Calculation

Object-based vs. World-based

• Common dichotomy in graphics

– objects situated in (world) space

– (world) space in which objects reside

• Bounding volumes are object-based

• Spatial Subdivision is world-based approach

• Sub-linear search – logarithmic ?

CSE782

Reduce ray path

Bounding Volumes
• Surround object with a simple volume

• Test ray against volume first

• Test object-space or world-space bound? (pros and
cons)

• Cost model - N*cb + pi*N*co

– N (number of rays) is given
pi – fraction of rays intersecting bounding volume

– Minimize cb (cost of intersecting bounding volume)
and co (cost of intersecting object)

– Reduce ray path

– Minimize cost/fit ratio

Arvo&Kirk-Glassner pp.209

CSE782

Bounding Volumes

CSE782

Reduce ray path

Bounding Volumes
• Bounding sphere

– Difficult to compute good one

– Easy to test for intersection

• Bounding box

– Easy to compute for given object

– Relatively difficult to intersect (maybe ?)

Arvo&Kirk-Glassner pp.209

CSE782

Pbrt’s Bounding Boxes

• Virtual BBox ObjectBound() const=0;

• Virtual BBox WorldBound() const {

return ObjectToWorld(ObjectBound());

}

• Bool BBox::IntersectP(Const Ray &ray, Float *hit0,

Float *hitt1) const { }

CSE782

Bounding Box

• Compute min/max for x,y,z

• 3 options

– Compute in world space

• Chance of ill fitting b-box

– Compute in object space and transform w/object

• Object space b-box probably better fit than world

space

• Need to intersect ray with arbitrary hexahedral in

world sp.

– Compute in object space and test in object space

• Inverse transform ray into object space

CSE782

Ray & Cube

P(t) = s + tc

tx1 = (x1 - sx)/cx

tx2 = (x2 - sx)/cx

ty1 = (y1 - sx)/cx

…

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

CSE782

Square/Cube

Note entering

and leaving

intersections

separately

Ray is inside after

last entering and

before first leaving

CSE782

Algorithm
set Tnear = - infinity, Tfar = infinity

Ray (t) = O + t * Ray

For each pair of planes P associated with X, Y, and Z do:
(example using X planes)
if direction Ray

x
 = 0 then the ray is parallel to the X planes

#if origin Ox is not between the slabs (Ox < Xl or Ox > Xh) then

##return false
else

#if the ray is not parallel to the plane then
#begin
compute the intersection distance of the planes
T1 = (Xl - Ox) / Xd
T2 = (Xh - Ox) / Xd
If T1 > T2 swap (T1, T2) - since T1 intersection with near plane

If T1 > Tnear # Tnear =T1 #- want largest Tnear
If T2 < Tfar # Tfar="T2" # - want smallest Tfar
If Tnear > Tfar # # # - box is missed so return false
If Tfar < 0 # # # - box is behind ray return false

#end

If Box survived all above tests, return true with intersection point Tnear and exit point Tfar.

CSE782

Bounding Sphere

• Find min/max points in x,y,z -> 3 pairs

• Use maximally separated pair to define initial sphere

• For each point

– If point is outside of current sphere, increase old

sphere to just include new point

CSE782

P

P

C

R

rad P

P

newC

R

newrad

P

P

C

R

rad

newrad = (R+rad)/2

P

P

C

R

newC

newrad

newC = P+(newrad/R)(C-P)
CSE782

Bounding Slabs

• More complex to compute

• Better fit of object

• Use multiple pairs of parallel planes to bound object

• Can add more slabs to get tighter fit

© 2004 Pharr, Humphreys

CSE782

Bounding Slabs

• Use algorithm for axis aligned bounding box

• intersect ray with arbitrary plane

P (t) · N = Di

(P + tR) · N = Di

t =

Di − P · N

R · N

P · N = D

P

RN
D1

D2

t1

t2

Slabs - More effort to compute, better fit CSE782

Approximate Convex Hull

• Find highest vertex

• Find plane through vertex parallel to ground plane

• Find second vertex that makes minimum angle with

first vertex and up vector

• Find third vertex that makes plane whose normal

makes minimum angle with up vector

For any unmatched edge, find

unused vertex such that the

plane of the vertex and edge

makes a minimum angle with

the plane of edge"s face

CSE782

Hierarchical Bounding Volumes

• Compute bounding volume for groups of objects

• Compute bounding volume for groups of groups of

objects

CSE782

Hierarchical Bounding Volumes

• Create tree of bounding volumes

• Children are contained within parent

• Creation preprocess

– From model hierarchy#

– Automatic clustering

• Search
 intersect(node,ray,hits) {

 if(intersectp(node->bound,ray)

 if(leaf(node))

 intersect(nodeprims,ray,hits)

 else

 for each child

 intersect(child,ray,hits)

 }

Return the closest of all hits !

CSE782

Tree Organization

Problem

• Subtrees overlap

• Does not contain all objects it overlaps

• Balance

CSE782

Spatial Enumeration

• Divide space into !voxels"

• Bucket sort objects in voxels they intersect

– Object goes into each voxel it touches

– Reuse results from one voxel calculation

• Determine voxels that a ray intersects

– Only deal with the objects in those voxels

CSE782

Spatial Enumeration

• Identifying voxels hit is like a line drawing algorithm

CSE782

Uniform Grids

• Preprocess scene

• Find Big bounding box

CSE782

Uniform Grids

• Preprocess scene

• Find Big bounding box

• Determine grid resolution

(how ?)

CSE782

Uniform Grids

• Preprocess scene

• Find bounding box

• Determine grid

resolution

• Place object in cell if its

bounding box overlaps

the cell

CSE782

Uniform Grids

• Preprocess scene

• Find Big bounding box

• Determine grid resolution

• Place object in cell if its
bounding box overlaps
the cell

• Check that object
overlaps cell (expensive!)

CSE782

Add Sorting

• If objects/voxels/cells are processed in front-to-

back sorted order, stop processing when first

intersection is detected

• e.g., process cells
in bottom to top,
left to right order
and stop at first
intersection

CSE782

Uniform Grids
• Preprocess scene

• Traverse grid

– 3D line = 3D-DDA

– 6-connected line

• pbrt algorithm (grid

accelarator)

CSE782

Amanatides & Woo Algorithm

• J. Amanatides and A. Woo, "A Fast Voxel Traversal
Algorithm for Ray Tracing", Proc. Eurographics '87,
Amsterdam, The Netherlands, August 1987, pp 1-10.

Step[X,Y] +/- 1

tMax[X,Y] – first intersection

tDelta[X,Y] - voxel distance in [X,Y]

CSE782

A&W Algorithm

CSE782

A&W Algorithm Results

• Rendering time for different levels of subdivision

CSE782

Objects Across Multiple Voxels

• Mailboxes eliminate redundant intersection tests

• Objects have mailboxes

• Assign rays numbers

• check against objects last tested ray number

• Intersection must be within current voxel

CSE782

Hierarchical Spatial Subdivision

• Recursive subdivision of space

• 1-1 Relationship between scene points and leaf nodes

• Example: point location by recursive search(log time)

• Solves the lack-of-adaptivity problem

• DDA works

• Effective in practice

CSE782

Variations

KD tree octtree BSP tree

CSE782

Example

A

B
C

D

A

B

C

D

Leaves are unique regions in space

Recursive search
KdTreeAccel - pbrt

CSE782

Creating Spatial Hierarchies

Insert(node,prim) {

! If (overlap(node->bound,prim)) {

! ! If (leaf(node)) {

! ! ! If (node->nprims > MAXPRIMS && node->depth < MAXDEPTH) {

! ! ! ! subdivide(node);

! ! ! ! foreach child in node! !

! ! ! ! ! insert(child,prim)

! ! ! }

! ! ! else list_insert(node->prims,prim);

! ! }

! ! foreach child in node

! ! ! insert(child,prim)

! }

}

// Typically MAXDEPTH=16, MAX PRIMS = 2-8

CSE782

Comparison

Scheme Spheres Rings Tree

Uniform grid D=1 244 129 1517

D=20 38 83 781

Hierarchical grid 34 116 34

•# See “A Proposal for Standard Graphics Environments”, IEEE Computer
Graphics and Applications, vol. 7, no. 11, November 1987, pp. 3-5

CSE782

Questions?

• “Teapot in a stadium” versus uniform distribution

• Multiplicative constants important

• Adaptivity allows robustness

• Cache effects are important

