	Ray Intersection
	Acceleration
Read Chap Chap Chap	ings ter 2 – Geometry & Transformations ter 3 – Shapes ter 4 – Primitives & Intersection Acceleration We'll cover this in class
CSE782	

leometry
,00111011. ;
es in PBRT
ing them in PBRT
ometry
- -

P	brt and Intersections
WorldBound	Returns a bounding box in world space
Intersect	Return 'true' if an intersection and an intersection structure
IntersectP	Return 'true' if an intersection occurs but does not return an intersection structure
Refine	If non-intersectable, refines shape into (some) intersectable new shapes
CSE782	

Speeding up Intersection Calculation Object-based vs. World-based

- Common dichotomy in graphics
 - objects situated in (world) space
 - (world) space in which objects reside
- Bounding volumes are object-based
- Spatial Subdivision is world-based approach
- Sub-linear search logarithmic ?

CSE782

Bounding Volumes. Surround object with a simple volume Test ray against volume first Test object-space or world-space bound? (pros and cons). Cost model - N*cb + pi*N*co N (number of rays) is given pi - fraction of rays intersecting bounding volume. Minimize cb (cost of intersecting bounding volume) and co (cost of intersecting bounding volume). Reduce ray path Minimize cost/fit ratio

Approximate Convex Hull

- Find highest vertex
- Find plane through vertex parallel to ground plane
- Find second vertex that makes minimum angle with first vertex and up vector
- Find third vertex that makes plane whose normal makes minimum angle with up vector

For any unmatched edge, find unused vertex such that the plane of the vertex and edge makes a minimum angle with the plane of edge's face

Hierarchical Spatial Subdivision

- · Recursive subdivision of space
- 1-1 Relationship between scene points and leaf nodes
- Example: point location by recursive search(log time)
- · Solves the lack-of-adaptivity problem
- DDA works

CSE782

Effective in practice

<pre>Insert(node,prim) { ff (overlap(node>bound,prim)) { if (leaf(node)) { if (node>-nprims > MAXPRIMS && node>depth < MAXDEPTH) { subdivide(node); foreach child in node</pre>	Creating Spatial Hierarchies
<pre>ff (overlap(node->bound,prim)) { ff (leaf(node) { if (node->nprims > MAXPRIMS && node->depth < MAXDEPTH) { subdivide(node); foreach child in node insert(child,prim) } elses list_insert(node->prims,prim); foreach child in node insert(child,prim) } // Typically MAXDEPTH=16, MAX PRIMS = 2-8 </pre>	Insert(node,prim) {
CSE782	<pre>If (overlap(node>bound,prim)) {</pre>
	CSE782

	_			
			Y	No.
Scheme		Spheres	Rings	Tree
		244	129	1517
Uniform grid	D=1			
Uniform grid	D=1 D=20	38	83	781
Uniform grid Hierarchical grid	D=1	38 34	83 116	781 34

