Ray Intersection Acceleration

Readings
Chapter 2 - Geometry \& Transformations $c_{\text {covers basic math and }}$
Chapter 3 - Shapes PBRT implementation
es \& Intersection Acead on your own
Chapter 4 - Primitives \& Intersection Acceleration

CSE782

Reading

Chapter 3: Shapes

3.1	Basic PBRT shape interface
$3.2-3.5$	Specific shapes - quadrics
3.6	Triangles and meshes
3.7	Subdivision surfaces

CSE782

Ray Tracing Architecture

Reading

Chapter 2: Geometry and Transformations

$2.1-2.5$	Review basic geometry
2.6	3D Bounding boxes in PBRT
$2.7-2.8$	Transformation \& applying them in PBRT
$2.5 .1 \& 2.9$	Differential geometry

CSE782

Ray Tracing

- Shoot a ray through each pixel;
- Find first object intersected by ray

Compute ray. (More linear algebra.)
Compute ray-object intersection.
Spawn more rays for reflection and refraction
CSE782

Optimizing Ray Tracing

- Main computation load is ray-object intersection
- $50-90 \%$ of run time when profiled
- Test for possible intersection before committing to computing intersections

Ray Intersection Acceleration

Pbrt and Intersections

WorldBound	Returns a bounding box in world space
Intersect	Return 'true' if an intersection and an intersection structure
IntersectP	Return 'true' if an intersection occurs but does not return an intersection structure
Refine	If non-intersectable, refines shape into (some) intersectable new shapes

CSE782

Complexity !

- I rays or pixels in image
- N objects
- $\mathrm{O}(\mathrm{NI})$
- Can we do $\mathrm{O}(\mathrm{I} \log \mathrm{N})$?

Pbrt and Intersections

- Primitive base class
- Shapes are subclasses of primitive Primitives
- Aggregate class
- Methods
- WorldBound
- CanIntersect
- Intersect
- IntersectP
- Refine
- First four return Intersection
 structures
- Last returns Primitives

CSE782

Intersection Geometry

- Shape independent representation for intersections
- DifferentialGeometry Intersection::dg
- Point P
- Normal N
- Parametric (u,v)
- Partial derivatives Tangents: dpdu, dpdv change in normal: dndu, dndv

Speeding up Intersection Calculation Object-based vs. World-based

- Common dichotomy in graphics
- objects situated in (world) space
- (world) space in which objects reside
- Bounding volumes are object-based
- Spatial Subdivision is world-based approach
- Sub-linear search - logarithmic?

Pbrt's Bounding Boxes

- Virtual BBox ObjectBound() const=0;
- Virtual BBox WorldBound() const \{
return ObjectToWorld(ObjectBound()); \}
- Bool BBox::IntersectP(Const Ray \&ray, Float *hit0, Float *hitt1) const \{ \}

Bounding Volumes

- Surround object with a simple volume
- Test ray against volume first
- Test object-space or world-space bound? (pros and cons)
- Cost model - $\mathrm{N}^{\star} \mathrm{cb}+\mathrm{pi}^{*} \mathrm{~N}^{*} \mathrm{co}$
-N (number of rays) is given pi - fraction of rays intersecting bounding volume
- Minimize cb (cost of intersecting bounding volume) and co (cost of intersecting object)
- Reduce ray path
- Minimize cost/fit ratio

CSE782

Bounding Volumes

- Bounding sphere
- Difficult to compute good one
- Easy to test for intersection
- Bounding box
- Easy to compute for given object
- Relatively difficult to intersect (maybe ?)

Bounding Box

- Compute min/max for x, y, z
- 3 options
- Compute in world space
- Chance of ill fitting b-box
- Compute in object space and transform w/object
- Object space b-box probably better fit than world space
- Need to intersect ray with arbitrary hexahedral in world sp.
- Compute in object space and test in object space
- Inverse transform ray into object space

Ray \& Cube

$P(t)=s+t c$
$t_{x 1}=\left(x 1-s_{x}\right) / c_{x}$
$\mathrm{t}_{\mathrm{x} 2}=\left(\mathrm{x} 2-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{c}_{\mathrm{x}}$
$t_{y 1}=\left(y 1-s_{x}\right) / c_{x}$

CSE782

Algorithm

set Tnear $=-$ infinity, Tfar $=$ infinity
Ray $(\mathrm{t})=\mathrm{O}+\mathrm{t}$ * Ray
For each pair of planes P associated with X, Y, and Z do:
if direction Ray ${ }_{x}=0$ then the ray is parallel to the X planes X planes)
if origin Ox is not between the slabs ($\mathrm{Ox}<\mathrm{XI}$ or $\mathrm{Ox}>\mathrm{Xh}$) then
return false
else
if the r
if the ray is not parallel to the plane then
begin
compute the intersection distance of the planes
$\mathrm{T1}=(\mathrm{Xl}-\mathrm{Ox}) / \mathrm{Xd}$
$\mathrm{T} 1=(\mathrm{XI}-\mathrm{OX}) / \mathrm{Xd}$
$\mathrm{T} 2=(\mathrm{Xh}-\mathrm{O}) / \mathrm{Xd}$
If $\mathrm{T} 1>\mathrm{T} 2 \operatorname{swap}(\mathrm{~T} 1, \mathrm{~T} 2)$ - since T 1 intersection with near plane
$\begin{array}{ll}\text { If T1 }>\text { Tnear } \\ \text { if } \mathrm{T} 2<\text { Tfar } & \text { Tnear }=T 1-\text { want largest Tnear } \\ \text { Tfar="T2" } & \text { want smallest Tfar }\end{array}$
$\begin{array}{ll}\text { If Tnear > Tfar } & \text { - ox is missed so return false } \\ \text { If Tfar }<0 & \text { - box is behind ray return fals }\end{array}$
If Tfar <0
Box survived all above tests, return true with intersection point Tnear and exit point Tfar.

CSE782

Bounding Slabs

- More complex to compute
- Better fit of object
- Use multiple pairs of parallel planes to bound object
- Can add more slabs to get tighter fit

CSE782

Bounding Slabs

- Use algorithm for axis aligned bounding box
- intersect ray with arbitrary plane $P \cdot N=D$

$$
\begin{array}{r}
P(t) \cdot N=D_{i} \\
(P+t R) \cdot N=D_{i} \\
t=\frac{D_{i}-P \cdot N}{R \cdot N}
\end{array}
$$

Slabs - More effort to compute, better fit

Approximate Convex Hull

- Find highest vertex
- Find plane through vertex parallel to ground plane
- Find second vertex that makes minimum angle with first vertex and up vector
- Find third vertex that makes plane whose normal makes minimum angle with up vector

For any unmatched edge, find unused vertex such that the plane of the vertex and edge makes a minimum angle with the plane of edge's face

Hierarchical Bounding Volumes

- Compute bounding volume for groups of objects
- Compute bounding volume for groups of groups of objects

Problem

- Subtrees overlap
- Does not contain all objects it overlaps
- Balance

CSE782

Hierarchical Bounding Volumes

- Create tree of bounding volumes
- Children are contained within parent
- Creation preprocess
- From model hierarchy
- Automatic clustering
- Search
intersect(node, ray, hits) \{

iff intersectp(node->bound,ray)
if(leaf(node))
else
for each child
intersect(child,ray,hits)
\}
Return the closest of all hits !
CSE782

Spatial Enumeration

- Divide space into 'voxels'
- Bucket sort objects in voxels they intersect
- Object goes into each voxel it touches
- Reuse results from one voxel calculation
- Determine voxels that a ray intersects
- Only deal with the objects in those voxels

Spatial Enumeration

- Identifying voxels hit is like a line drawing algorithm

CSE782

Uniform Grids

- Preprocess scene
- Find Big bounding box
- Determine grid resolution (how ?)

CSE782

Uniform Grids

- Preprocess scene
- Find bounding box
- Determine grid resolution
- Place object in cell if its bounding box overlaps the cell

Add Sorting

- If objects/voxels/cells are processed in front-toback sorted order, stop processing when first intersection is detected
- e.g., process cells in bottom to top, left to right order and stop at first intersection

CSE782

A\&W Algorithm

do if (maxax $<\operatorname{tmaxy}$)

$x=x+$ eqppx
$15(X==$ fustout $)$
return(NIL) ; /* outside gria */
else ; tmaxX + tDeltax;
$Z=Z+$ stepz;
if $(Z==$ justout $Z)$

else
if (tMaxy <tMaxZ)
$Y=Y+$ step $;$
if $(Y=-j u s t o u t Y)$
return (NIL) ;

if $(z=$ justoutz $)$
return (NIL) ;
tMaxZ $=$ tMaxz + tDeltaz;
${ }_{11}{ }_{11 s t}$
11st= objectList $[\mathrm{X}][\mathrm{Y}][\mathrm{Z}]$ $\}$ while (11st $==$ NIL);
CSE782 return(list);

Objects Across Multiple Voxels

- Mailboxes eliminate redundant intersection tests
- Objects have mailboxes
- Assign rays numbers
- check against objects last tested ray number
- Intersection must be within current voxel

Amanatides \& Woo Algorithm

Figure 1
loop
if (tMaxX < tMaxY) \{
J. Amanatides and A. Woo, "A Fast Voxel Traversal Amsterdam, The Netherlands, August 1987, pp 1-10. tMaxX $=t$ Max X
$X=X+s t e p X ;$ \} else \{
tMaxY= tMaxy + tDeltay $\mathrm{Y}=\mathrm{Y}+\mathrm{step} \mathrm{Y}$;

```
    NextVoxel (X,Y);
```

Step $[\mathrm{x}, \mathrm{y}]+/-1$
tMax[$\mathrm{X}, \mathrm{y}]$ - first intersection tdelta $[\mathrm{x}, \mathrm{y}]$ - voxel distance in $[\mathrm{x}, \mathrm{y}]$

A\&W Algorithm Results

- Rendering time for different levels of subdivision

CSE782

Hierarchical Spatial Subdivision

- Recursive subdivision of space
- 1-1 Relationship between scene points and leaf nodes
- Example: point location by recursive search(log time)
- Solves the lack-of-adaptivity problem
- DDA works
- Effective in practice

Fig. 13. Non-uniform spatial subdivision via an octree. The ray shown here causes five of the voxels to be examined and three of the eight objects to be tested for intersection. Finer subdivision can decrease the number of ray-obiect tests at the expense of additional voxel processing overhead.

Creating Spatial Hierarchies

Insert(node,prim) \{

If (overlap(node->bound,prim)) \{
If (leaf(node)) \{
If (node->nprims > MAXPRIMS \&\& node->depth < MAXDEPTH) \{
subdivide(node);
foreach child in node
insert(child,prim)
els
\}
foreach child in node
insert(child,prim)
$\}$
// Typically MAXDEPTH=16, MAX PRIMS $=2-8$

CSE782

Questions?

- "Teapot in a stadium" versus uniform distribution
- Multiplicative constants important
- Adaptivity allows robustness
- Cache effects are important

Comparison

Scheme		Spheres	Rings	Tree
Uniform grid	$\mathrm{D}=1$	244	129	1517
	$\mathrm{D}=20$	38	83	781
Hierarchical grid		34	116	34

See "A Proposal for Standard Graphics Environments", IEEE Computer
Graphics and Applications, vol. 7, no. 11, November 1987, pp. 3-5

CSE782

