Computer Animation Algorithms and Techniques

Integration
Integration

Given acceleration, compute velocity & position by integrating over time

\[f = ma \]
\[a = \frac{f}{m} \]
\[v' = v + a \cdot t \]
\[p' = p + vt + \frac{1}{2} at^2 \]
Projectile

given initial velocity under gravity
Euler integration

For arbitrary function, $f(t)$

$$f(t_{i+1}) = f(t_i) + f'(t_i) \cdot \Delta t$$
Integration - derivative field

For arbitrary function, $f(t)$
Step size

\[\Delta x = 0.2 \]

\[\Delta x = 5 \]
Numeric Integration Methods

(explicit or forward) Euler Integration
2nd order Runga Kutta Integration (Midpoint Method)
4th order Runga Kutta Integration
Implicit (backward) Euler Integration
Semi-implicit Euler Integration
Runge Kutta Integration: 2nd order
Aka Midpoint Method

For unknown function, $f(t)$; known $f'(t)$

\[f(t_{i+rac{1}{2}}) = f(t_i) + \frac{1}{2} f'(t_i) \cdot \Delta t \]

\[f(t_{i+1}) = f(t_i) + f'(t_{i+rac{1}{2}}) \cdot \Delta t \]
Step size

$\Delta x = 2$

Euler Integration

Midpoint Method
Runge Kutta Integration: 4th order

For unknown function, f(t); known f'(t)

\[f(t_{i+1}) = f(t_i) + h\left(\frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 \right) \]
Implicit Euler Integration

For arbitrary function, $f(t)$, find next point whose derivative updates last value to this value: required numeric method (e.g. Newton-Raphson)

$$y_{n+1} = y_n + hf'(t_{i+1})$$

Search for point such that negative of tangent points back at original point
Differential equation, initial boundary problem

\[f(t_0) = y_0 \]

(\text{explicit/forward})

\text{Euler method}

\[f'(t, y_t) \approx \frac{y_{t+1} - y_t}{h} \]

\[y_{t+1} = y_t + hf'(t, y_t) \]

(\text{implicit/backward})

\text{Euler method}

\[f'(t, y_t) \approx \frac{y_t - y_{t-1}}{h} \]

\[y_{t+1} = y_t + hf'(t + h, y_{t+1}) \]

e.g. linearize f’ and use Newton-Raphson
Semi-Implicit Euler Integration

\[y_{i+1} = y_i + hf'(t + h, y_i + hf'(t, y_i)) \]
Methods specific to update position from acceleration

Heun Method
Verlet Method
Leapfrog Method
Heun Method

\[v(t_{i+1}) = v(t_i) + a(t_i) \Delta t \]

\[x(t_{i+1}) = x(t_i) + \frac{1}{2} (v(t_i) + v(t_{i+1})) \Delta t \]

\[x(t_{i+1}) = x(t_i) + v(t_i) \Delta t + \frac{1}{2} a(t_i) \Delta t^2 \]
Verlet Method

\[\begin{align*}
x(t_{i+1}) &= 2x(t_i) - x(t_{i-1}) + a(t_i)\Delta t^2 \\
x(t_{i+1}) &= x(t_i) + (x(t_i) - x(t_{i-1})) + a(t_i)\Delta t^2
\end{align*} \]
Leapfrog Method

\[v(t_{i+\frac{1}{2}}) = v(t_{i-\frac{1}{2}}) + a(t_{i-1}) \Delta t \]

\[x(t_{i+1}) = x(t_i) + v(t_{i+\frac{1}{2}}) \Delta t \]

\[v(t_{i+\frac{3}{2}}) = v(t_{i+\frac{1}{2}}) + a(t_i) \Delta t \]