CIS 694 (682): Introduction to Computer Animation

* Rick Parent

Description
Introduction to the basic algorithms and techniques used in producing computer animation including interpolation, particle systems, flocking, physically based simulation, inverse kinematics, and facial animation.

Level and Credits
UG 4 (three one-hour lectures, heavy programming)

Prerequisites
* CIS 681

Quarters Offered
* Au

General Information, Exclusions, etc.
* None

Objectives
* Mastery of basic techniques to interpolate the movement of objects
* Familiarity with physically based animation, energy minimization, and constraint-based animation.
* Exposure to algorithms to animate the human figure and natural phenomena such as plants, clouds, and fire

Text

Grading Plan
* presentations - 20%
* midterm - 20%
* final - 20%
* final project - 40%
Topics

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, overview and history of computer animation; relation to conventional animation, overview of digital video; introduction to software</td>
<td>Ch. 1 App. B</td>
</tr>
<tr>
<td>2</td>
<td>Background - display pipeline, quaternion math, curve formulations, rendering issues for animation</td>
<td>Ch. 2, App. A</td>
</tr>
<tr>
<td>3</td>
<td>Interpolation, arclength parameterization, ease-in/ease-out control</td>
<td>Ch. 3</td>
</tr>
<tr>
<td>4</td>
<td>Deformable models, animation languages, plug-ins</td>
<td>Ch. 3</td>
</tr>
<tr>
<td>5</td>
<td>forward and inverse kinematics; introduction to physically based animation</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>6</td>
<td>Collision detection and response</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>7</td>
<td>physically based animation</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>8</td>
<td>constraint-based animation</td>
<td>Ch. 4</td>
</tr>
<tr>
<td>9</td>
<td>modeling and animating natural phenomena</td>
<td>Ch. 5</td>
</tr>
<tr>
<td>10</td>
<td>modeling and animating the human figure</td>
<td>Ch. 6</td>
</tr>
</tbody>
</table>

Projects

* Group projects - 2 or more students, mixing ART students with CIS students when possible,
* Project groups are required to keep a web page with storyboard and status of the project including still images and test animations as they are generated,
* for each group, 4 oral progress reports made by the entire group to the class during the quarter:

Project progress reports

* week 2 - proposed storyboard
* week 4 - final storyboard, sample still images
* week 6 - timing of sequences, sample stills, sample low-res animation
* week 8 - sample final high-res animation, storage and time requirements of project
* finals week - final presentation of animation to class

Exams

* week 5 - midterm
* week 10 - final