Volume Visualization with Ray Casting

www.cs.technion.ac.il/~zdevir/volume/Volume.ppt
Volume Rendering

• render an image a volume
 ✦ CT, X-ray, PET, MRI scans
 ✦ Clouds
 ✦ Compressible fluids
• volume represented by 3D cell grid
Volume Rendering

Typical sizes
- 128x128x128
- 256x256x256

Display approaches
- Extract surfaces
- Ray trace
Ray Casting

• Generate image directly from density data
• Cast ray through density volume
• Accumulate colors as ray passes through semi-transparent cells
Accumulate illuminated densities

Density: \(D(t) = D(x(t), y(t), z(t)) \)

Illumination: \(I(x, y, z) \)

Phase function: \(P(\cos \theta) \)

\(I(t)D(t)P(\cos \theta) \)
\(I(t) \)

Radiation from light source
Attenuated, shadowed by volume

Only needed where internal shadows are important
e.g., clouds, fire, smoke
Attenuation along a ray

\[-\tau \int_{t_1}^{t_2} D(s) ds \]

\(\tau \) converts density to attenuation

\[\int_{t_1}^{t_2} \left(e^{-\tau \int_{t_1}^{t} D(s) ds} \right) I(t) D(t) P(\cos \theta) dt \]
Outgoing light

- light reflected in view direction from light source
- incoming light filtered by the voxel
- light emitted by the voxel
Ray casting algorithm

For every pixel in output image
- shoot ray into volume
- at evenly spaced ray locations, obtain color and opacity by interpolation
- merge color and opacities
 - front to back
 - back to front
Visualization pipeline

• Shade volume data
• compute local gradient -> voxel normal
• produce RGB intensity for every voxel
• determine opacity of each voxel
 - application dependent
 - e.g. X-ray absorption coefficient
• Ray cast volume
Voxel values

- $C(X)$ - shade
- $a(X)$ - opacity
- $C_{out} = C_{in}(1-a(X_i)) + c(X_i)a(X_i)$

Often parallel projection is used to simplify calcs
Packages

- AVS: Application Visualization System
- IBM Data Explorer (DX)
- Data Visualizer
Display issues

How to represent:

• Temporal information
• Non-spatial information
• Multi-dimensional information
Examples
Examples
Examples
Examples

Developer Edition

Rapid application development for Developers
Speed-ups

• Hierarchical spatial enumeration
• adaptive termination
Hierarchical Spatial Enumeration

Level 0 containing 4 x 4 x 4 cells

Voxel (5, 5, 5)

Cell (i, j, k) on level m having value V_m(i)

Level 2 containing one cell

Voxel (1, 1, 1)

Cell (1, 1, 1)
Traversing Volume
Examples
Examples