Simple Illumination
Types

Ambient lighting
• indirect light hitting the object by reflecting off of other surfaces - color of surface reflecting it

Diffuse
light reflecting off the object by being absorbed by the surface (subsurface scattering) and reemitted equally in all directions

Specular
light reflecting immediately off the surface - directional and color of light source
Ambient

Radiosity - calculate amount of each surface visible from given point on object and propagate reflected light through environment

Approximation - use constant as amount of indirect Light hitting each surface and
 • Add to diffuse light hitting object
 Or
 • Reflect portion of ambient light (OpenGL)
Diffuse

Light hitting surface direct from light source

Scatters equally in all direction (get absorbed in surface and emerges in random direction)

Because it is absorbed, the reflected light is the color of the object
Diffuse

Amount of incoming light is function of incoming direction

View independent

Reflectance function

Light
Diffuse

Calculate area of delta area projected onto plane perpendicular to direction of light rays

Projected area = \sin(\theta)
= \cos(\phi)
= N \cdot L

\[(N \cdot L)color_{object}\]
Specular

Light hitting surface direct from light source

It reflects directly off of surface of object and is reflected primarily at angle from normal equal to angle coming in (incident angle)

Because it is not absorbed, the reflected light is the color of the light source
Specular

Phong Model for Specular Reflection: Calculate direction of reflection and use cosine falloff as view deviates from that direction.
Specular

\[(E \cdot N)N - E\]

\[(E \cdot N)N + (E \cdot N)N - E\]

\[2(E \cdot N)N - E = R_E\]

CSE 681
Specular

R_E – reflection vector of E

R_L – reflection vector of L

$\cos(\theta) = E \cdot R_L = L \cdot R_E$

Raise it to a power (material property) to control how fast the specular component falls off. Multiply by color of light.

$(E \cdot R_L)^f color_{light}$

OR

$(L \cdot R_E)^f color_{light}$
Illumination Model

Assume single, white light source

Add coefficient of reflectivity for diffuse, K_d, and specular light, K_s

Add intensity of light, I

Assume ambient term is incoming light to be diffusely reflected

\[C = K_d (a + I(N \cdot L))c_{obj} + K_s (R_E \cdot L)^f I(1,1,1) \]
Multiple Light Sources

Add in the effects of a light source if and only if the face is a FRONT FACE with respect to the light based on sign of $N \cdot L$

$\delta_i = 0$ if light is behind face

1 if light is in front of face

Assume multiple colored light sources

Diffuse - color of object (c_{obj})
Specular - color of light source (c_i)

Use $L \cdot R_E$ to avoid recomputing reflection vector

$$C = K_d (a + \sum_i [\delta_i I_i (N \cdot L_i)])c_{obj} + K_s \sum_i [\delta_i I_i (R_E \cdot L_i)^f c_i]$$

CSE 681
Some of the Options

Ambient term wavelength dependent

Each light contributes to ambient light: ambient_i

Light has different diffuse and specular intensities

Calculate Light reflection vector instead of Eye reflection vector

Use bisecting vector between L and E, compare to N for specular (see next slide)

Reflection coefficients wavelength dependent (separate r, g, b values)

Light color affects diffuse color
Specular

Alternative specular calculation

H - bisects angle made by L and E

Compare H to N (cosine of angle)

\[\frac{\theta}{2} = \alpha \]

\[H = \frac{(E+L)}{|E+L|} \]

\[(H \cdot N)^f \text{ color}_{light} \]

CSE 681