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Volume Rendering

Lecture 21
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Visualization of Volumetric 
Data
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Overview

Volume rendering refresher
Rectilinear scalar fields
Direct volume rendering and optical models
Volume rendering integral
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Volume rendering integral
Ray casting and alpha blending

Volume resampling on graphics hardware (part 1)
Texture-based volume rendering
Proxy geometry
2D textured slices
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Surface Graphics

Traditionally, graphics objects are 
modeled with surface primitives 
(surface graphics).
Continuous in object space

3/4/2010 R. Crawfis, Ohio State Univ. 5

Continuous in object space

Difficulty with Surface Graphics 

Volumetric object handling
gases, fire, smoke, clouds (amorphous data)
sampled data sets (MRI, CT, scientific)
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Peeling, cutting, sculpting
any operation that exposes 
the interior

Volume Graphics 

Typically defines objects on a 3D raster, or discrete 
grid in object space
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Raster grids: structured or unstructured
Data sets: sampled, computed, or voxelized
Peeling, cutting … are easy with a volume model

Volume Graphics & Surface 
Graphics
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Volume Graphics - Cons

Disadvantages:
Large memory and processing 

power

3/4/2010 R. Crawfis, Ohio State Univ. 9

power
Object- space aliasing
Discrete transformations
Notion of objects is different

Volume Graphics - Pros

Advantages:
Required for sampled data and 

amorphous phenomena
Insensitive to scene complexity
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Insensitive to scene complexity
Insensitive to surface type
Allows block operations

Volume Graphics Applications 
(simulation data set)

Scientific data set visualization
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More Volume Graphics 
Applications (artistic data set)

Amorphous entity visualization 
smoke, steam, fire
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Volume Rendering Algorithms

Intermediate geometry based 
(marching cube)
Direct volume rendering
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Direct volume rendering
Splatting (forward projection)
Ray Casting (backward projection) or 
resampling
Cell Projection / scan-conversion
Image warping

How to visualize?

Slicing: display the volume 
data, mapped to colors, 
along a slice plane
Iso-surfacing: generate 

slice
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g g
opaque and semi-opaque 
surfaces on the fly 
Transparency effects: 
volume material attenuates 
reflected or emitted light

Semi-transparent
material Iso-surface

Overview

Volume rendering refresher
Rectilinear scalar fields
Direct volume rendering and optical models
Volume rendering integral
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Volume rendering integral
Ray casting and alpha blending

Volume resampling on graphics hardware (part 1)
Texture-based volume rendering
Proxy geometry
2D textured slices

Volume Data

Continuous scalar field in 3D
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Discrete volume:
voxels
Sampling
Reconstruction
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Direct Volume Rendering

Render volume without extracting any surfaces
(DVR)
Map scalar values to optical properties
(color, opacity)
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( , p y)
Need optical model
Solve volume rendering
integral for viewing rays
into the volume

Direct Rendering Pipeline I

Detection of Structures
Shading
Reconstruct (interpolate/filter)
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Reconstruct (interpolate/filter) 
color/opacity
Composite
Final Image Validation (change 
parameters)

Direct Rendering Pipeline

Classify
Shade

Vi ibilit

Reconstruct

C it
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Visibility
order

Composite

Validate

Early Methods

Before 1988
Did not consider transparency
did not consider sophisticated light 
transportation theory
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were concerned with quick solutions
hence more or less applied to binary data
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Back-To-Front - Frieder et al 1985

A viewing algorithm that traverses and renders 
the scene objects in order of decreasing
distance from the observer.
Maybe derived from a standard -
“P i t  Al ith ”
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“Painters Algorithm”

1. 2. 3.

Back-To-Front - Frieder et al 1985

2D
Start traversal at point farthest 
from the observer,
2 orders
Either x or y can be innermost loop

x
A

C D

B
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Either x or y can be innermost loop
If x is innermost, display order will 
be A, C, B, D y Screen

If y is innermost, display order will be C, A, D, B
Both result in the correct image! 
If voxel (x,y) is (partially) obscured by voxel (x’,y’), then 
x <= x’ and y <= y’. So project (x,y) before (x’,y’) and the 
image will be correct

Back-To-Front - Frieder et al 1985

3D
Axis traversal can still be done arbitrarily, 8 orders
Data can be read and rendered as slices
Note: voxel projection is NOT in order of strictly 
decreasing distance  so this is not the painter’s 
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decreasing distance, so this is not the painter s 
algorithm.
Perspective?
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Ray Casting

Goal: numerical approximation of the volume rendering 
integral
Resample volume at equispaced locations along the ray
Reconstruct at continuous
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Reconstruct at continuous
location via tri-linear
interpolation
Approximate integral
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Ray Tracing

“another” typical method from traditional 
graphics
Typically we only deal with primary rays -
hence: ray-casting
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a natural image-order technique
as opposed to surface graphics - how do we 
calculate the ray/surface intersection???
Since we have no surfaces - we need to carefully 
step through the volume

Ray Casting

Since we have no surfaces - we need to carefully 
step through the volume: a ray is cast into the 
volume, sampling the volume at certain intervals
The sampling intervals are usually equi-distant, 
b t d ’t h  t  b  (  i t  li )
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but don’t have to be (e.g. importance sampling)
At each sampling location, a sample is 
interpolated / reconstructed from the grid 
voxels
popular filters are: nearest neighbor (box), 
trilinear (tent), Gaussian, cubic spline
Along the ray - what are we looking for?

Basic Idea of Ray-casting 
Pipeline

- Data are defined at the corners
of each cell (voxel)

- The data value inside the c1
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The data value inside the 
voxel is determined using 
interpolation (e.g. tri-linear)

- Composite colors and opacities
along the ray path

- Can use other ray-traversal schemes as well

c1

c2

c3

Evaluation = Compositing

“over” operator - Porter & Duff 1984

Cin

C, α

C(0)in
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C(N)out

Cout
Ci, αi

α⋅+α−⋅= CCC inout )1( ( ) ( )outin iCiC 1−=
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Compositing: Over Operator
cf = (0,1,0)
af = 0.4
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cb = (1,0,0)
ab = 0.9

c = af*cf + (1 - af)*ab*cb

a = af + (1 - af)*ab

c = (0.54,0.4,0)
a = 0.94

Volumetric Ray Integration 

color

opacity
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opacity

object (color, opacity)

1.0

Interpolation

binary smooth
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Closest value Weighted average

Tri-Linear Interpolation
eye

image pixel

viewing ray

3/4/2010 R. Crawfis, Ohio State Univ. 32

voxel

sample point

trilinear
interpolation
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Interpolation Kernels

color

opacity

volumetric compositing
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opacity

object (color, opacity)

1.0

Interpolation Kernels

color

opacity

interpolation kernel volumetric compositing
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opacity

object (color, opacity)

1.0

color c = c s αs(1 - α) + c

opacity α= α s (1 - α) + α

Interpolation Kernels

color

opacity

volumetric compositinginterpolation kernel
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opacity

object (color, opacity)

1.0

Interpolation Kernels

color

opacity

volumetric compositing
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opacity

object (color, opacity)

1.0
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Interpolation Kernels

color

opacity

volumetric compositing
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opacity

object (color, opacity)

1.0

Interpolation Kernels

color

opacity

volumetric compositing
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opacity

object (color, opacity)

1.0

Interpolation Kernels

color

opacity

volumetric compositing
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opacity

object (color, opacity)

1.0

Interpolation Kernels

color

opacity

volumetric compositing
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opacity

object (color, opacity)
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Levoy - Pipeline

Acquired values

Data preparation

Prepared values

l fh d
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classificationshading

Voxel colors

Ray-tracing / resampling Ray-tracing / resampling

Sample colors
compositing

Voxel opacities

Sample opacities

Image Pixels

Ray Marching 

Use a 3D DDA algorithm to step through 
regular or rectilinear grids.
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Adaptive Ray Sampling
[Hanrahan et al 92]

Sampling rate is adjusted to the significance 
of the traversed data
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Classification

How do we obtain the emission and 
absorption values?

scalar value s

3/4/2010 R. Crawfis, Ohio State Univ. 44

emission RGB
absorption A

T(s)
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Ray Traversal Schemes
Intensity

Max

Average
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Depth

Accumulate
First

Ray Traversal - First

Intensity
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Depth

First

First: extracts iso-surfaces (again!)
done by Tuy&Tuy ’84

Ray Traversal - Average

Intensity

Average
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Depth

Average: produces basically an X-ray picture

Ray Traversal - MIP

Intensity
Max
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Depth

Max: Maximum Intensity Projection
used for Magnetic Resonance Angiogram
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Maximum Intensity Projection (1)

No emission or absorption
Pixel value is maximum scalar value along the viewing 
ray

Scalar value S
Maximum Smax
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Advantage: no transfer function required
Drawback: misleading depth information

Works well for MRI data (esp. angiography)

rays0 s

Maximum Intensity Projection (2)
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Emission/Absorption MIP

Ray Traversal - Accumulate

Intensity
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Depth

Accumulate

Accumulate: make transparent layers visible!
Levoy ‘88

Transfer function

“ here’s
the edge ”

v = f (x)

v0
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v

α

v0

x


