

Overview

- Similar to CSG
- Combine primitive objects to form complex object
- Primitives are "density fields"
- Combine by summing densities
- The surface is all points at which the density equals a user-defined threshold

Implicit Surface

- A surface not explicitly represented
- The surface consists of all points which satisfy a function

$$
F(x, y, z)=0
$$

- Usually, the implicit function is defined so that $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})<0=>$ inside the object $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})>0=>$ outside the surface Sometimes $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is based on a distance-to-a-central-element
- The surface points have to be searched for!

Multiple Implicits

- Define each primitive as positive density field
- Sum densities
- Surface is defined at threshold
- Usually have finite radius of influence

Blended Blobs

- Define surface as sum of densities

$$
\begin{aligned}
& \left\{p \mid \sum d_{i}(p)-T=0\right\} \\
& \left\{p \mid \sum w_{i} d_{i}(p)-T=0\right\}
\end{aligned}
$$

Search for Intersection

Identify spans of interest: bounds on intersection

CSE 681

Density Functions

Define a density function that is:
Easy to evaluate
Blends smoothly
Intuitive to use

Density functions proposed in the literature
Exponential
Piecewise cubic
Cubic in distance squared

Distance-based Density Functions

$$
\mathrm{d}_{\mathrm{i}}(\mathrm{P})=\mathrm{D}\left(\mathrm{P}-\mathrm{C}_{\mathrm{i}} / \mathrm{R}\right)=\mathrm{D}(\mathrm{r})
$$

r is normalized distance

$D_{1}(r)=\left(1-r^{2}\right)^{3}$		
$D_{2}(r)=1-(4 / 9) r^{6}+(17 / 9) r^{4}-(22 / 9) r^{2}$		
$D_{3}(r)=$	$\exp \left(-\mathrm{ar}^{2}\right)$	
$D_{4}(r)=1-3 r^{2}$	$0<=r<1 / 3$	
	$(3 / 2)(1-r)^{2}$	$1 / 3<=r<1$

$\mathrm{D}_{1}(\mathrm{r})=\left(1-\mathrm{r}^{2}\right)^{3}$
$0<=\mathrm{r}<1$
$0<=\mathrm{r}<1$
$D_{3}(r)=\exp \left(-a^{2}\right)$
$(3 / 2)(1-r)^{2} \quad 1 / 3<=r<1$

Distance-based Density Functions

$$
D_{3}(r)=\exp \left(-a r^{2}\right)
$$

Distance-based Density
Functions

CSE 681

Distance-based Density
Functions

$$
D_{1}(r)=\left(1-r^{2}\right)^{3} \quad 0<=r<1
$$

Distance-based Primitives

Point
Distance-based Primitives

Distance-based Primitives

Polygon

Polygonal mesh

Partition space by planes perpendicular to plane through an edge

Same, for each face - two planes per edge

Distance-based Primitives

Polyhedra

Convex?

Concave?

Display Considerations

Find point of intersection along ray: $\mathrm{F}(\mathrm{P}(\mathrm{t}))=0$
Compute normal

Bulge problem

One long primitive

Two side-by-side primitives

CSE 681

Computing the Normal

Form analytic expression of implicit function
And take partial derivatives
$\mathrm{N}=(\delta \mathrm{F} / \delta \mathrm{x}, \delta \mathrm{F} / \delta \mathrm{y}, \delta \mathrm{F} / \delta \mathrm{z})$

Take discrete approximation by sampling function
Compute gradient
$\mathrm{N}=(\mathrm{F}(\mathrm{x}+\mathrm{dx}, \mathrm{y}, \mathrm{z})-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{F}(\mathrm{x}, \mathrm{y}+\mathrm{dy}, \mathrm{z})-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}+\mathrm{dz})-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}))$

CSG-approach to control blending

Use nodes to combine primitives by either summing or taking max of functions

Complexity

-Bounding volumes
-Spatial subdivision - cellular bucket sort
-Hierarchical spatial subdivision - quadtree
-Binary spatial partitioning

Display alternative

Marching cubes algorithm - construct surface fragments from isosurface intersections with grid cells

