Ray Tracing Implicit Surfaces

Overview

- Similar to CSG
- Combine primitive objects to form complex object
- Primitives are "density fields"
- Combine by summing densities
- The surface is all points at which the density equals a user-defined threshold

Implicit Surface

- A surface not explicitly represented
- The surface consists of all points which satisfy a function

$$
F(x, y, z)=0
$$

- Usually, the implicit function is defined so that
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})<0=>$ inside the object
$F(x, y, z)>0=>$ outside the surface
Sometimes $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is based on a distance-to-a-central-element
- The surface points have to be searched for!

For example: single metaball

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}
$$

Multiple Implicits

- Define each primitive as positive density field
- Sum densities
- Surface is defined at threshold
- Usually have finite radius of influence

Organic shapes

Density Function

Threshold

- Define threshold that defines density of surface
- R_{T} is the radius of the isosurface (blob) in isolation

Blended Blobs

- Define surface as sum of densities

$$
\begin{aligned}
& \left\{p \mid \sum d_{i}(p)-T=0\right\} \\
& \left\{p \mid \sum w_{i} d_{i}(p)-T=0\right\}
\end{aligned}
$$

Weighted Density Functions

- Define surface as weighted sum of densities

$$
\mathrm{f}(\mathrm{p})=\Sigma \mathrm{w}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}(\mathrm{p})-\mathrm{T}=0
$$

To keep the same radius, but increase blending, change weight, w_{i}, and the threshold, T, simultaneously.

Weights can be negative, too!

Ray Intersection

Need to search along the ray for the first time $\mathrm{f}(\mathrm{P}(\mathrm{t}))=0$

Search for Intersection

Search for Intersection

Identify spans of interest: bounds on intersection

Density Functions

Define a density function that is:
Easy to evaluate Blends smoothly Intuitive to use

Density functions proposed in the literature Exponential
Piecewise cubic Cubic in distance squared

Density Functions

Distance-based Density Functions

$$
\mathrm{d}_{\mathrm{i}}(\mathrm{p})=\mathrm{D}\left(\left|\mathrm{P}-\mathrm{C}_{\mathrm{i}}\right| / \mathrm{R}\right)=\mathrm{D}(\mathrm{r})
$$

r is normalized distance

$$
\left.\begin{array}{ll}
D_{1}(r)=\left(1-r^{2}\right)^{3} & 0<=r<1 \\
D_{2}(r)=1-(4 / 9) r^{6}+(17 / 9) r^{4}-(22 / 9) r^{2} & 0<=r<1 \\
D_{3}(r)=\exp \left(-a r^{2}\right) & \\
D_{4}(r)=1-3 r^{2} & 0<=r<1 / 3 \\
& (3 / 2)(1-r)^{2}
\end{array} \quad 1 / 3<=r<1\right) \quad .
$$

Distance-based Density Functions

$$
D_{2}(r)=1-(4 / 9) r^{6}+(17 / 9) r^{4}-(22 / 9) r^{2} \quad 0<=r<1
$$

Distance-based Density Functions

$$
D_{3}(r)=\exp \left(-a r^{2}\right)
$$

Distance-based Density Functions

$$
\begin{array}{rlr}
D_{4}(r)=1-3 r^{2} & 0<=r<1 / 3 \\
(3 / 2)(1-r)^{2} & 1 / 3<=r<1
\end{array}
$$

Distance-based Density Functions

$$
D_{1}(r)=\left(1-r^{2}\right)^{3} \quad 0<=r<1
$$

Distance-based Primitives

Point

Line

Polygon

Polygonal mesh

Anything you can efficiently compute the distance from

Distance-based Primitives

Point

Distance from line or endpoints

- partition by perpendiculars

Distance from one of lines or points - partition by perpendiculars

Distance-based Primitives

Polygon
Partition space by planes perpendicular to plane through an edge

Polygonal mesh

Same, for each face - two planes per edge

Distance-based Primitives

Polyhedra

Convex?

Concave?

Display Considerations

Find point of intersection along ray: $\mathrm{F}(\mathrm{P}(\mathrm{t}))=0$ Compute normal

Computing the Normal

Form analytic expression of implicit function And take partial derivatives $\mathrm{N}=(\delta \mathrm{F} / \delta \mathrm{x}, \delta \mathrm{F} / \delta \mathrm{y}, \delta \mathrm{F} / \delta \mathrm{z})$

Take discrete approximation by sampling function Compute gradient
$\mathrm{N}=(\mathrm{F}(\mathrm{x}+\mathrm{dx}, \mathrm{y}, \mathrm{z})-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{F}(\mathrm{x}, \mathrm{y}+\mathrm{dy}, \mathrm{z})-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}+\mathrm{dz})-\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}))$

Bulge problem

One long primitive

Two side-by-side primitives

CSG-approach to control blending

Use nodes to combine primitives by either summing or taking max of functions

Complexity

-Bounding volumes
-Spatial subdivision - cellular bucket sort
-Hierarchical spatial subdivision - quadtree
-Binary spatial partitioning

Display alternative

Marching cubes algorithm - construct surface fragments from isosurface intersections with grid cells

Distance-based Primitives

Examples

Examples

Examples

