Ray Tracing Implicit Surfaces

Overview

- Similar to CSG
 - Combine primitive objects to form complex object
- Primitives are "density fields"
- Combine by <u>summing</u> densities
- The surface is all points at which the density equals a user-defined <u>threshold</u>

Implicit Surface

- A surface not explicitly represented
- The surface consists of all points which satisfy a function

F(x,y,z) = 0

- Usually, the implicit function is defined so that
 F(x,y,z) < 0 => inside the object
 F(x,y,z) > 0 => outside the surface
 Sometimes F(x,y,z) is based on a distance-to-a-central-element
- The surface points have to be searched for!

For example: single metaball

Multiple Implicits

- Define each primitive as positive density field
- Sum densities
- Surface is defined at threshold
- Usually have finite radius of influence

Organic shapes

Density Function

Threshold

- Define threshold that defines density of surface
- R_T is the radius of the isosurface (blob) in isolation

Blended Blobs

• Define surface as sum of densities

 $\left\{ p \left| \sum d_i(p) - T = 0 \right\} \right\}$ $\left\{ p \left| \sum w_i d_i(p) - T = 0 \right\} \right\}$

Weighted Density Functions

• Define surface as <u>weighted sum of densities</u>

 $f(p) = \Sigma w_i d_i (p) - T = 0$

To keep the same radius, but increase blending, change weight, w_i, and the threshold, T, simultaneously.

Weights can be negative, too!

Ray Intersection

Need to *search* along the ray for the first time f(P(t)) = 0

Shortcuts and Search strategies?

Search for Intersection

Search for Intersection

Identify spans of interest: bounds on intersection

Density Functions

Define a density function that is: Easy to evaluate Blends smoothly Intuitive to use

Density functions proposed in the literature Exponential Piecewise cubic Cubic in distance squared

Density Functions

 $d_i(p) = D(|P-C_i|/R) = D(r)$

r is normalized distance

 $\begin{array}{ll} D_1(r) = (1 - r^2)^3 & 0 <= r < 1 \\ D_2(r) = 1 - (4/9)r^6 + (17/9)r^4 - (22/9)r^2 & 0 <= r < 1 \\ D_3(r) = \exp(-ar^2) & 0 <= r < 1/3 \\ & (3/2)(1 - r)^2 & 1/3 <= r < 1 \end{array}$

0 <= r < 1

 $D_2(r) = 1 - (4/9)r^6 + (17/9)r^4 - (22/9)r^2$

 $D_3(r) = exp(-ar^2)$

 $D_4(r) = 1-3r^2$ (3/2)(1-r)²

 $0 \le r \le 1/3$ $1/3 \le r \le 1$

 $D_1(r) = (1-r^2)^3$ $0 \le r < 1$

Polygonal mesh

Partition space by planes perpendicular to plane through an edge

Same, for each face - two planes per edge

Polyhedra

Convex?

Concave?

Display Considerations

Computing the Normal

Form analytic expression of implicit function And take partial derivatives $N = (\delta F / \delta x, \delta F / \delta y, \delta F / \delta z)$

Take discrete approximation by sampling function Compute gradient N = (F(x+dx,y,z)-F(x,y,z), F(x,y+dy,z)-F(x,y,z), F(x,y,z+dz)-F(x,y,z))

Bulge problem

One long primitive

Two side-by-side primitives

CSG-approach to control blending

Use nodes to combine primitives by either summing or taking max of functions

Complexity

•Bounding volumes

•Spatial subdivision - cellular bucket sort

•Hierarchical spatial subdivision – quadtree

•Binary spatial partitioning

Display alternative

Marching cubes algorithm - construct surface fragments from isosurface intersections with grid cells

Examples

Examples

Examples

