

Ray-Object Intersection

Implicit forms
$F(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$

Ray: $\mathrm{P}(\mathrm{t})=(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ source $+\mathrm{t}^{*}$ direction $=\mathrm{s}+\mathrm{t}^{*} \mathrm{v}$

Solve for t : $\mathrm{F}(\mathrm{P}(\mathrm{t}))=0$

Ray-Sphere Intersection

Implicit form for sphere at origin of radius 1 $F(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$

Ray: $P(t)=(x, y, z)=s+t v=\left(s_{x}+t v_{x}, s_{y}+t v_{y}, s_{z}+t v_{z}\right)$
Solve:
$F(P(t))=\left(s_{x}+t v_{x}\right)^{2}+\left(s_{y}+t v_{y}\right)^{2}+\left(s_{z}+t v_{z}\right)^{2}-1=0$
$=s_{x}^{2}+s_{y}^{2}+s_{z}^{2}+2 t\left(s_{x} v_{x}+s_{y} v_{y}+s_{z} v_{z}\right)+t^{2}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)-1=0$

> Use quadratic equation..

Ray-Sphere Intersection

$$
\begin{aligned}
& A t^{2}+B t+C=0 \\
& A=|v|^{2} \\
& B=2 s \cdot v \\
& C=|s|^{2}-1 \\
& \qquad t=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& B^{2}-4 A C<0 \quad=>\text { no intersection } \\
& \quad=0 \quad=>\text { just grazes } \\
& >0 \quad=>\text { two hits } \\
& \text { CSE } 681
\end{aligned}
$$

Axis-Aligned Cuboid

(rectangular solid, rectangular parallelpiped)

$$
\begin{aligned}
& \text { Ray equation } \\
& \mathrm{P}(\mathrm{t})=\mathrm{s}+\mathrm{tv}
\end{aligned}
$$

Planar equations

Solve for intersections with planes

$$
\begin{aligned}
\mathrm{t}_{\mathrm{x} 1} & =\left(\mathrm{x} 1-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{v}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{x} 2} & =\left(\mathrm{x} 2-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{v}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y} 1} & =\left(\mathrm{y} 1-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{v}_{\mathrm{x}}
\end{aligned}
$$

Normal Vector

Given ordered sequence of points defining a polygon how do you find a normal vector for the plane?

Note: 2 normal vectors to a plane, colinear and one is the negation of the other

Ordered: e.g., clockwise when viewed from the front of the face

Right hand v. left hand space

Normal Vector

$\mathrm{m}_{\mathrm{x}}=\Sigma\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\text {next }(\mathrm{i})}\right)\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\text {next }}(\mathrm{i})\right)$
$\mathrm{m}_{\mathrm{y}}=\Sigma\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\text {next }(\mathrm{i})}\right)\left(\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\text {next }(\mathrm{i})}\right)$
$\mathrm{m}_{\mathrm{z}}=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mathrm{X}_{\text {next }} \mathrm{i}\right)\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\text {next }(\mathrm{i})}\right)$

Ray-Plane

$\mathrm{n} \cdot \mathrm{P}=-\mathrm{d}$

$\mathrm{P}=\mathrm{s}+\mathrm{t}^{*} \mathrm{~V}$
$n \cdot\left(s+t^{*} v\right)=-d$
$n \cdot s+t^{*}(n \cdot v)=-d$
$\mathrm{t}=-(\mathrm{d}+\mathrm{n} \cdot \mathrm{s}) /(\mathrm{n} \cdot \mathrm{v})$

Solid Modeling

Modeling of three-dimensional solids
Physically realizable objects
No infinitely thin sheets, no lines
Interior of object should 'hold water'

- Define a closed volume
http://www.gvu.gatech.edu/~jarek/papers/SolidModelingWebster.pdf

CSE 681

Polygonal Solid Models

Vertices of a face have a consistent ordering (e.g. clockwise) when viewed from the outside side of the face

Each edge of a face is shared by one and only one other face

Each edge appears oriented one way in one face and the other way in the other face

$$
\begin{gathered}
\text { EULER'S FORMULA } \\
\text { F-E }+\mathbf{V}=2 \\
F-E+V=2-2 P
\end{gathered}
$$

[^0]
Convex Polyhedron

volume bounded by finite number of infinite planes

Computing intersections is similar to cube but using ray-plane intersection and arbitrary number of planes
$\mathrm{n} \cdot \mathrm{P}=-\mathrm{d}$
Use $\mathrm{n} \cdot \mathrm{v}$ to determine
$P(t)=s+t^{*} V$
Entering/exiting status
$\mathrm{n} \cdot(\mathrm{s}+\mathrm{t} * \mathrm{v})=-\mathrm{d}$
$n \cdot s+t^{*}(n \cdot v)=-d$
$\mathrm{t}=-(\mathrm{d}+\mathrm{n} \cdot \mathrm{s}) /(\mathrm{n} \cdot \mathrm{v})$

Convex Polyhedron

\Intersection going from outside to inside
Intersection going from inside to outside

Record maximum entering intersection - enterMax
Record minimum exiting intersection - exitMin
If (enterMax < exitMin) polyhedron is intersected

Concave Polyhedron

Find closest face (if any) intersected by ray

Need ray-face (ray-polygon) intersection test

Ray-Convex Polygon

Test to see if point is on
'inside’ side of each edge

Dot product of

normal
Cross product of
ordered edge
vector from edge source to point of intersection

Ray-Concave Polyhedron

1. Intersect ray with plane
2. Determine if intersection point is inside of 2D polygon
A) Convex polygon
B) Concave polygon

Ray-concave polygon
Project plane and point of intersection to 2D plane

Project to plane of 2
smallest coordinates
of normal vector

Form semi-infinite ray and count ray-edge intersections

Transformed objects

Intersect ray with transformed object
Use inverse of object transformation to transform ray Intersect transformed ray with untransformed object

Transformed objects

$r(t)=s+t v$	World space ray
$s=\left[s_{x}, s_{y}, s_{z}, 1\right]$	
$v=\left[v_{x}, v_{y}, v_{z}, 0\right]$	
M	Object to world transform matrix
$R(t)^{T}=M^{-1} s^{T}+M^{-1} v^{T}$	Object space ray

Intersect ray with object in object space

Ray-Cylinder

CSE 681

Ray-Cylinder

$$
\begin{aligned}
& \left(P\left(t_{1}\right)-Q\left(t_{2}\right)\right) \cdot v_{1}=0 \\
& \left(P\left(t_{1}\right)-Q\left(t_{2}\right)\right) \cdot v_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left(s_{1}+t_{1} v_{1}-\left(s_{2}+t_{2} v_{2}\right)\right) \cdot v_{1}=0 \\
& \left(s_{1}+t_{1} v_{1}-\left(s_{2}+t_{2} v_{2}\right)\right) \cdot v_{2}=0
\end{aligned}
$$

Ray-Ellipsoid

Ray-Quadric

Geometric construction: all points p such that $|p-a|+|p-b|=r$

Algebraic equation - axis aligned, origin centered

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0
$$

http://en.wikipedia.org/wiki/Quadric

[^0]: CSE 681

