Object Intersection

Object Representation

Implicit forms F(x,y,z) = 0

testing

Explicit forms Analytic form x = F(y,z)

generating

Parametric form (x,y,z) = P(t)

CSE 68

Ray-Object Intersection

Implicit forms F(x,y,z) = 0

Ray: P(t) = (x,y,z) = source + t*direction = s + t*v

Solve for t: F(P(t)) = 0

CSE 681

Ray-Sphere Intersection

Implicit form for sphere at origin of radius 1 $F(x, y, z) = x^{2} + y^{2} + z^{2} - 1 = 0$

Ray: $P(t) = (x, y, z) = s + tv = (s_x + tv_x, s_y + tv_y, s_z + tv_z)$

Solve: ...

 $F(P(t)) = (s_x + tv_x)^2 + (s_y + tv_y)^2 + (s_z + tv_z)^2 - 1 = 0$ = $s_x^2 + s_y^2 + s_z^2 + 2t(s_xv_x + s_yv_y + s_zv_z) + t^2(v_x^2 + v_y^2 + v_z^2) - 1 = 0$

Use quadratic equation...

Normal Vector

Given ordered sequence of points defining a polygon how do you find a normal vector for the plane?

Note: 2 normal vectors to a plane, colinear and one is the negation of the other

Ordered: e.g., clockwise when viewed from the front of the face

Right hand v. left hand space

Solid Modeling

Modeling of three-dimensional solids

Physically realizable objects

No infinitely thin sheets, no lines

Interior of object should 'hold water' - Define a closed volume

http://www.gvu.gatech.edu/~jarek/papers/SolidModelingWebster.pdf

CSE 681

Polygonal Solid Models

Vertices of a face have a consistent ordering (e.g. clockwise) when viewed from the outside side of the face

Each edge of a face is shared by one and only one other face

Each edge appears oriented one way in one face and the other way in the other face

EULER'S FORMULA F - E + V = 2F - E + V = 2 - 2P

Concave Polyhedron

Find closest face (if any) intersected by ray

Need ray-face (ray-polygon) intersection test

Ray-Concave Polyhedron

- 1. Intersect ray with plane
- 2. Determine if intersection point is inside of 2D polygon
 - A) Convex polygon
 - B) Concave polygon

Ray-Cylinder	
$(P(t_1) - Q(t_2)) \cdot v_1 = 0$ (P(t_1) - Q(t_2)) \cdot v_2 = 0	
$(s_1 + t_1v_1 - (s_2 + t_2v_2)) \cdot v_1 = 0$ (s_1 + t_1v_1 - (s_2 + t_2v_2)) \cdot v_2 = 0	

