Object Intersection

Object Representation

Implicit forms

$$
F(x, y, z)=0
$$

testing

Explicit forms
Analytic form $\mathrm{x}=\mathrm{F}(\mathrm{y}, \mathrm{z})$
generating
Parametric form $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{P}(\mathrm{t})$

Ray-Object Intersection

Implicit forms

$$
F(x, y, z)=0
$$

Ray: $\mathrm{P}(\mathrm{t})=(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ source $+\mathrm{t}^{*}$ direction $=\mathrm{s}+\mathrm{t}^{*} \mathrm{v}$

Solve for t : $\mathrm{F}(\mathrm{P}(\mathrm{t}))=0$

Ray-Sphere Intersection

Implicit form for sphere at origin of radius 1

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}-1=0
$$

Ray: $P(t)=(x, y, z)=s+t v=\left(s_{x}+t v_{x}, s_{y}+t v_{y}, s_{z}+t v_{z}\right)$
Solve: ...

$$
\begin{aligned}
F(P(t)) & =\left(s_{x}+t v_{x}\right)^{2}+\left(s_{y}+t v_{y}\right)^{2}+\left(s_{z}+t v_{z}\right)^{2}-1=0 \\
& =s_{x}{ }^{2}+s_{y}{ }^{2}+s_{z}{ }^{2}+2 t\left(s_{x} v_{x}+s_{y} v_{y}+s_{z} v_{z}\right)+t^{2}\left(v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}{ }^{2}\right)-1=0
\end{aligned}
$$

Use quadratic equation...

Ray-Sphere Intersection

$$
\begin{aligned}
& A t^{2}+\mathrm{Bt}+\mathrm{C}=0 \\
& \mathrm{~A}=|\mathrm{v}|^{2} \\
& \mathrm{~B}=2 \mathrm{~s} \cdot \mathrm{v} \\
& \mathrm{C}=|\mathrm{s}|^{2}-1
\end{aligned}
$$

$$
t=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

$\mathrm{B}^{2}-4 \mathrm{AC}<0=>$ no intersection
$=0$ => just grazes
>0 => two hits

Axis-Aligned Cuboid

(rectangular solid, rectangular parallelpiped)
Ray equation

$$
\mathrm{P}(\mathrm{t})=\mathrm{s}+\mathrm{tv}
$$

Planar equations

Solve for intersections with planes

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{x} 1}=\left(\mathrm{x} 1-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{v}_{\mathrm{x}} \\
& \mathrm{t}_{\mathrm{x} 2}=\left(\mathrm{x} 2-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{v}_{\mathrm{x}} \\
& \mathrm{t}_{\mathrm{y} 1}=\left(\mathrm{y} 1-\mathrm{s}_{\mathrm{x}}\right) / \mathrm{v}_{\mathrm{x}}
\end{aligned}
$$

For each
intersection, note
whether entering or leaving square side of plane:
HOW?
Rectangle

Ray-Plane for arbitrary plane

Generalize from axis-aligned planes to any plane:

Normal Vector

Given ordered sequence of points defining a polygon how do you find a normal vector for the plane?

Note: 2 normal vectors to a plane, colinear and one is the negation of the other

Ordered: e.g., clockwise when viewed from the front of the face

Right hand v. left hand space

Normal Vector

$$
n=\left(V_{1}-V_{2}\right) \times\left(V_{3}-V_{2}\right)
$$

Normal Vector
 $$
\begin{aligned} & \mathrm{m}_{\mathrm{x}}=\Sigma\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\text {next }(\mathrm{i})}\right)\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\text {next }(\mathrm{i})}\right) \\ & \mathrm{m}_{\mathrm{y}}=\Sigma\left(\mathrm{z}_{\mathrm{i}}-\mathrm{z}_{\text {next(i) }}\right)\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\text {next(i) }}\right) \\ & \mathrm{m}_{\mathrm{z}}=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\text {next(i) }}\right)\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\text {next }(\mathrm{i})}\right) \end{aligned}
$$

Ray-Plane

$$
\begin{aligned}
& \mathrm{Ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0 \\
& \mathrm{n} \cdot \mathrm{P}=-\mathrm{d} \\
& \mathrm{P}=\mathrm{s}+\mathrm{t}^{*} \mathrm{v} \\
& \mathrm{n} \cdot\left(\mathrm{~s}+\mathrm{t}^{*} \mathrm{v}\right)=-\mathrm{d} \\
& \mathrm{n} \cdot \mathrm{~s}+\mathrm{t}^{*}(\mathrm{n} \cdot \mathrm{v})=-\mathrm{d} \\
& \mathrm{t}=-(\mathrm{d}+\mathrm{n} \cdot \mathrm{~s}) /(\mathrm{n} \cdot \mathrm{v})
\end{aligned}
$$

Ray-Polyhedron

Polyhedron - volume bounded by flat faces
Each face is defined by a ring of edges Each edge is shared by 2 and only 2 faces

The polyhedron can be convex or concave
Faces can be convex or concave

Polyhedron Classification

Solid Modeling

Modeling of three-dimensional solids

> Physically realizable objects

No infinitely thin sheets, no lines
Interior of object should 'hold water'

- Define a closed volume
http://www.gvu.gatech.edu/~jarek/papers/SolidModelingWebster.pdf

Polygonal Solid Models

Vertices of a face have a consistent ordering (e.g. clockwise) when viewed from the outside side of the face

Each edge of a face is shared by one and only one other face

Each edge appears oriented one way in one face and the other way in the other face

EULER'S FORMULA

$$
\begin{gathered}
F-E+V=2 \\
F-E+V=2-2 P
\end{gathered}
$$

Convex Polyhedron

volume bounded by finite number of infinite planes

Computing intersections is similar to cube but using ray-plane intersection and arbitrary number of planes

$$
\begin{aligned}
& \mathrm{n} \cdot \mathrm{P}=-\mathrm{d} \\
& \mathrm{P}(\mathrm{t})=\mathrm{s}+\mathrm{t}^{*} \mathrm{v}
\end{aligned}
$$

Use $\mathrm{n} \cdot \mathrm{v}$ to determine
Entering/exiting status

$$
\begin{aligned}
& n \cdot\left(s+t^{*} v\right)=-d \\
& n \cdot s+t^{*}(n \cdot v)=-d \\
& t=-(d+n \cdot s) /(n \cdot v)
\end{aligned}
$$

Convex Polyhedron

Intersection going from outside to inside Intersection going from inside to outside

Record maximum entering intersection - enterMax Record minimum exiting intersection - exitMin

If (enterMax < exitMin) polyhedron is intersected

Concave Polyhedron

Find closest face (if any) intersected by ray

Need ray-face (ray-polygon) intersection test

Ray-Convex Polygon

Test to see if point is on ‘inside’ side of each edge

$$
\mathrm{n} \cdot(\mathrm{VxE})>0
$$

Dot product of
normal
Cross product of ordered edge
vector from edge source to point of intersection

Ray-Concave Polyhedron

1. Intersect ray with plane
2. Determine if intersection point is inside of 2D polygon
A) Convex polygon
B) Concave polygon

Ray-concave polygon

Project plane and point of intersection to 2D plane 2D point-inside-a-polygon test

Project to plane of 2 smallest coordinates of normal vector

Form semi-infinite ray and count ray-edge intersections

2D Point Inside a Convex Polygon

Semi-infinite ray test

$$
\begin{aligned}
& \left(p_{y}<p 1_{y}\right) \& \&\left(p_{y}>p 2_{y}\right) \|\left(p_{y}>p 1_{y}\right) \& \&\left(p_{y}<p 1_{y}\right) \\
& p_{x}<p 1_{x}+\left(p 2_{x}-p 1_{x}\right)\left(p_{y}-p 1_{y}\right) /\left(p 2_{y}-p 1_{y}\right)
\end{aligned}
$$

Test to see if point is on 'inside’ side of each edge
Need to know order (CW or CCW) of 2D vertices

$$
\left(p_{x}-p 1_{x}\right)\left(p 2_{y}-p 1_{y}\right)-\left(p_{y}-p 1_{y}\right)\left(p 2_{x}-p 1_{x}\right)
$$

2D point inside a polygon test

Special Cases

Logically move ray up epsilon

2D point inside a polygon test

$$
\text { if }\left(\left(\left(y<y_{2}\right) \& \&\left(y>=y_{1}\right)\right) \|\left(\left(y<y_{1}\right) \& \&\left(y>=y_{2}\right)\right)\right)
$$

Transformed objects

e.g., Ellipse is transformed sphere

World space

Intersect ray with transformed object
Use inverse of object transformation to transform ray Intersect transformed ray with untransformed object

Transformed objects

$$
\begin{array}{ll}
r(t)=s+t v & \text { World space ray } \\
s=\left[s_{x}, s_{y}, s_{z}, 1\right] \\
v=\left[v_{x}, v_{y}, v_{z}, 0\right] &
\end{array}
$$

$$
R(t)^{T}=M^{-1} s^{T}+M^{-1} v^{T} \quad \text { Object space ray }
$$

Transform intersection point and normal back to world space

Object to world transform matrix

Intersect ray with object in object space
$\left\{\begin{array}{l}P_{\text {world }}{ }^{T}=M P_{\text {object }}{ }^{T} \\ N_{\text {world }}{ }^{T}=\left(M^{-1}\right)^{T} N_{\text {object }}{ }^{T}\end{array}\right.$

Ray-Cylinder

$$
\begin{aligned}
& \left(P\left(t_{1}\right)-Q\left(t_{2}\right)\right) \cdot v_{1}=0 \\
& \left(P\left(t_{1}\right)-Q\left(t_{2}\right)\right) \cdot v_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left(s_{1}+t_{1} v_{1}-\left(s_{2}+t_{2} v_{2}\right)\right) \cdot v_{1}=0 \\
& \left(s_{1}+t_{1} v_{1}-\left(s_{2}+t_{2} v_{2}\right)\right) \cdot v_{2}=0
\end{aligned}
$$

Ray-Ellipsoid

Geometric construction: all points p such that
$|\mathrm{p}-\mathrm{a}|+|\mathrm{p}-\mathrm{b}|=\mathrm{r}$

Algebraic equation - axis aligned, origin centered

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1
$$

Ray-Quadric

$$
P(t)=(x, y, z)=s+t v=\left(s_{x}+t v_{x}, s_{y}+t v_{y}, s_{z}+t v_{z}\right)
$$

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0
$$

http://en.wikipedia.org/wiki/Quadric

