

Review: Illuminate routine

Given first intersection of ray with object
p-point
obj - object it intersects including material properties Color reflectivity
n - normal vector of object at that point
Calculate the color of that point
Color = illuminate(p,obj,n)

Color $=$ illuminate(p,obj,n)
Need:
-Position in space that is to be illuminated
\cdot To form vectors to light, camera, etc.
-Normal vector
-To form reflection vector, compute angle to surface
-Access to object's material properties
-Color, Reflection coefficients, specular power
-Access to scene data including
-Lights: position, type, color, etc
-Camera: position
-Other objects (shadows, reflections, etc.)

CSE 681

Review: Illumination routine
Directional/Point/Warn
Intensity
Color
[Direction [Hood Angle]]
Color
Ambient: a
Diffuse: $N \cdot L$
Specular: $\left(L \cdot R_{E}\right)^{f}$

Introduce SHADE routine

to prepare for recusive organization

For each pixel
Compute ray, R , from eye through pixel
$\mathrm{C}=$ shade (R)
Pixel.color = C
Color shade(R)
intersect objects - get closest intersection
$\mathrm{c}=\mathrm{ambient}$
For each light source
Add in diffuse and specular components to C
Return c

Reflective Ray Tracing

It include reflection effects, in shade routine:

- Compute color of intersection point, just like before
- If object is shiny, spawn a reflective ray and call shade on that ray
- The color returned by reflective ray is attenuated by object's shininess and added to point color
- Limit number of recursive calls by including count and don't spawn ray if maximum is exceeded.

Reflective Ray Tracing

```
Color shade(ray,recursionDepth
intersect objects to get point, normal, object
If (intersection) {
c = ambient color
    Compute reflective ray, R, based on ray and normal
    For each light source
    Compute and add in diffuse and specular components to c
    If ((recursionDepth < maxRecursion) && (object is shiny))
    c += object.shininess * shade(R,recursionDepth+1)
    }
Else c = backgroundColor;
Return c
```

Retur

WARNING!

Refractive Ray Tracing

Refractive Ray Tracing

Same idea as Reflective ray tracing - spawn a secondary ray

The direction of the spawned ray is in the direction of the incoming ray altered a little bit

The alteration is based on the material that the ray is leaving (e.g. air) and the material that the ray is entering (e.g., glass)

Once this direction is computed, then the shade routine is called recursively, just as with reflective rays.

Refractive Ray Direction

$\cos \left(\theta_{1}\right)=-\operatorname{dir} \cdot \mathrm{n}$
$\sin \left(\theta_{1}\right)=\operatorname{sqrt}\left(1-\cos ^{2}\left(\theta_{1}\right)\right)$
$\sin \left(\theta_{2}\right)=\mathrm{n}_{1} * \sin \left(\theta_{1}\right) / \mathrm{n}_{2}$
$\cos \left(\theta_{2}\right)=\operatorname{sqrt}\left(1-\sin ^{2}\left(\theta_{2}\right)\right)$
$\cos \left(\theta_{2}\right)=\operatorname{sqrt}\left(1-\left(n_{1} * \sin \left(\theta_{1}\right) / n_{2}\right)^{2}\right)$

$\cos \left(\theta_{2}\right)=\operatorname{sqrt}\left(1-\left(n_{1} / n_{2}\right)^{2 *}\left(1-\cos ^{2}\left(\theta_{1}\right)\right)\right)$
$\cos \left(\theta_{2}\right)=\operatorname{sqrt}\left(1-\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)^{2 *}\left(1-(\mathrm{dir} \cdot \mathrm{n})^{2}\right)\right.$

NOTE: if radical is negative, no refraction!
CSE 681

Refractive Ray Direction

Go $\cos \left(\theta_{2}\right)$ in the -n direction
Go $\sin \left(\theta_{2}\right)$ in the orthogonal direction
(while still in the plane of dir and n)
This direction (scaled by $\sin \left(\theta_{1}\right)$) is: dir $-(\operatorname{dir} \cdot \mathbf{n}) \mathrm{n}$
And scaled by $\sin \left(\theta_{2}\right)$ is: $\left(n_{1} / n_{2}\right)($ dir-(dir•n)n)
$\mathrm{T}=\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right) \operatorname{dir}-\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)(\operatorname{dir} \cdot \mathrm{n}) \mathrm{n}-\cos \left(\theta_{2}\right) \mathrm{n}$

```
Color shade(ray,recursionDepth)
{
intersect objects..
compute R ..
Process each light source ..
If (recursionDepth < maxRecursion) {
    If (object is shiny) c += shininess * shade(R, recursionDepth }+1\mathrm{ )
    If (object is transmittive) {
        Compute refractive ray, T, based on ray, normal, and Snell constants
        c = (1-transmittive)*c + transmittive * shade(T, recursionDepth+1)
    }
}
Return c
```

Refractive Intersection Normal

Recursive Ray Tracing

Reflectivity varies with incident angle

NOTE: refraction is really wavelength dependent
(where rainbows come from).

Fresnel equations
Schlick approximation: $\quad R(\theta)=R_{0}+\left(1-R_{0}\right)(1-\cos \theta)^{5}$
R 0 is reflectance at normal incidence:

From book:

Assume one of the n_{i}
is always 1 (air);
Call the other one n_{2}

Also uses Beer's Law to attenuate light
passing through
material (p. 214):
$\mathrm{I}(\mathrm{s})=\mathrm{I}(0) \mathrm{e}^{\mathrm{a}}$

IF (p is on a dielectric) THEN
$r=\operatorname{reflect}(d, n)$
IF ($\mathrm{d} . \mathrm{n}<0$) THEN $\{$
refract(d,n, $\left.\mathrm{n}_{2}, \mathrm{t}\right)$
$\mathrm{c}=$-d.n
$k_{\mathrm{t}}^{\mathrm{F}}=\mathrm{k}_{\mathrm{g}}=\mathrm{k}_{\mathrm{b}}=1$
Else \{
$\mathrm{k}_{\mathrm{i}}=\exp \left(-\mathrm{a}_{\mathrm{t}}, \mathrm{t}\right)$
$\mathrm{k}_{\mathrm{a}}=\exp (-\mathrm{a}, \mathrm{t})$
$\mathrm{k}_{\mathrm{b}}=\exp \left(-\mathrm{a}_{\mathrm{a}} \mathrm{t}\right)$
$\mathrm{k}_{\mathrm{b}}=\exp \left(-\mathrm{a}_{\mathrm{a}} \mathrm{t}\right)$
If refract $(\mathrm{d},-\mathrm{n}, 1 / \mathrm{n}, \mathrm{t})$ then $\mathrm{c}=$ t.n
Else return k^{*} color($\mathrm{p}+\mathrm{tr}$)
$\mathrm{R}_{0}=\left(\mathrm{n}_{2}-1\right)^{2} /\left(\mathrm{n}_{2}+1\right)^{2}$
$\mathrm{R}=\mathrm{R}_{0}+\left(1-\mathrm{R}_{0}\right)(1-\mathrm{C})^{5}$
Return k (Rcolor(p+tr)+(1-R)color(p+tt))

