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Reflection and Refraction

CSE 681

Review: Illuminate routine

Given first intersection of ray with object
p - point
obj - object it intersects including material properties

C l
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Color
reflectivity

n - normal vector of object at that point

Calculate the color of that point

Color = illuminate(p,obj,n)

Color = illuminate(p,obj,n)
Need:

•Position in space that is to be illuminated
•To form vectors to light, camera, etc.

•Normal vector
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•Access to scene data including
•Lights: position, type, color, etc
•Camera: position
•Other objects (shadows, reflections, etc.)

•Access to object’s material properties
•Color, Reflection coefficients, specular power

•To form reflection vector, compute angle to surface

Review: Illumination routine
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Introduce SHADE routine
to prepare for recusive organization

For each pixel
Compute ray, R, from eye through pixel
C = shade(R)
Pixel.color = C
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Pixel.color  C

Color shade(R)
{

intersect objects – get closest intersection
c = ambient 
For each light source

Add in diffuse and specular components to c
Return c

}

Reflective Ray Tracing
It include reflection effects, in shade routine:

• Compute color of intersection point, just like before

• If object is shiny, spawn a reflective ray and call shade on that 
ray
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ray

• The color returned by reflective ray is attenuated by object’s 
shininess and added to point color

• Limit number of recursive calls by including count and don’t 
spawn ray if maximum is exceeded.

Reflective 
Ray  

k = E·N

S = kN - E 
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Reflective Ray Tracing

Color shade(ray,recursionDepth)
{

intersect objects to get point, normal, object
If (intersection) {

c = ambient color
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Compute reflective ray, R, based on ray and normal
For each light source

Compute and add in diffuse and specular components to c
If ( (recursionDepth < maxRecursion) && (object is shiny) )

c += object.shininess * shade(R,recursionDepth+1)
}
Else c = backgroundColor;
Return c

}
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Reflective Ray Tracing
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ray
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WARNING !

Be careful not to have spawned reflection ray immediately 

intersect the object it is leaving!
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Should be no intersection

Refractive Ray Tracing

Same idea as Reflective ray tracing – spawn a secondary ray

The direction of the spawned ray is in the direction of the 
incoming ray altered a little bit
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Once this direction is computed, then the shade routine is called 
recursively, just as with reflective rays.

The alteration is based on the material that the ray is leaving 
(e.g. air) and the material that the ray is entering (e.g., glass)

Refractive Ray Tracing

n
dir

Medium c1
θ1
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Snell’s Law

Medium c2

θ2
Τ2

)sin()sin( 2211 θθ nn =
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Refractive Ray Direction
cos(θ1) = -dir·n
sin(θ1) = sqrt(1- cos2(θ1))
sin(θ2) = n1*sin(θ1)/n2

nθ
1

θ

dir
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cos(θ2) = sqrt(1 - sin2(θ2))
cos(θ2) = sqrt(1 - (n1*sin(θ1)/n2)2)
cos(θ2) = sqrt(1 - (n1/n2)2* (1- cos2(θ1)))
cos(θ2) = sqrt(1 - (n1/n2)2* (1- (dir·n)2)

NOTE: if radical is negative, no refraction! 

θ2

)sin()sin( 2211 θθ nn =

Refractive Ray Direction

Go cos(θ2) in the -n direction

dir

n

Go sin(θ2) in the orthogonal direction
(while still in the plane of dir and n)

θ1
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And scaled by sin(θ2) is: (n1/n2)(dir-(dir·n)n)

T = (n1/n2)dir - (n1/n2)(dir·n)n - cos(θ2)n

dir

This direction (scaled by sin(θ1)) is: dir - (dir·n)n
(while still in the plane of dir and n)

Recursive Ray Tracing
Color shade(ray,recursionDepth)
{
intersect objects…
compute R …
Process each light source …
If  (recursionDepth < maxRecursion) {
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If (object is shiny) c += shininess * shade(R, recursionDepth+1)
If (object is transmittive) {

Compute refractive ray, T, based on ray, normal, and Snell constants
c = (1-transmittive)*c + transmittive * shade(T, recursionDepth+1)

}
}
Return c

}

Refractive Intersection Normal
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Recursive Ray Tracing

nray
R1
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T3

T1 R2

R3

T2

Reflectivity varies with incident angle

NOTE: refraction is really wavelength dependent
(where rainbows come from). 
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Fresnel equations 
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R0 is reflectance at normal incidence: 8.00 =R

From book:
IF (p is on a dielectric) THEN
r = reflect(d,n)
IF (d.n<0) THEN {

refract(d,n,n2,t)
c=-d.n
kr=kg=kb=1

}
Else {

kr=exp(-art)
k =exp(-a t)

Assume one of the ni
is always 1 (air);
Call the other one n2
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kg exp( agt)
kb=exp(-abt)
If refract(d,-n,1/n,t) then c=t.n
Else return k*color(p+tr)

}
R0=(n2-1)2/(n2+1) 2

R= R0+(1- R0)(1-c)5

Return k(Rcolor(p+tr)+(1-R)color(p+tt))

Also uses Beer’s Law 
to attenuate light 
passing through 
material (p. 214):
I(s)=I(0)ea


