
1

Reflection and Refraction

CSE 681

Review: Illuminate routine

Given first intersection of ray with object
p - point
obj - object it intersects including material properties

C l

CSE 681

Color
reflectivity

n - normal vector of object at that point

Calculate the color of that point

Color = illuminate(p,obj,n)

Color = illuminate(p,obj,n)
Need:

•Position in space that is to be illuminated
•To form vectors to light, camera, etc.

•Normal vector

CSE 681

•Access to scene data including
•Lights: position, type, color, etc
•Camera: position
•Other objects (shadows, reflections, etc.)

•Access to object’s material properties
•Color, Reflection coefficients, specular power

•To form reflection vector, compute angle to surface

Review: Illumination routine

L

R

Directional/Point/Warn
Intensity
Color
[Direction [Hood Angle]]

CSE 681

N

ray

RE

E

Ambient: a

Diffuse: LN ⋅

Specular: () f
ERL ⋅

Color

2

Introduce SHADE routine
to prepare for recusive organization

For each pixel
Compute ray, R, from eye through pixel
C = shade(R)
Pixel.color = C

CSE 681

Pixel.color C

Color shade(R)
{

intersect objects – get closest intersection
c = ambient
For each light source

Add in diffuse and specular components to c
Return c

}

Reflective Ray Tracing
It include reflection effects, in shade routine:

• Compute color of intersection point, just like before

• If object is shiny, spawn a reflective ray and call shade on that
ray

CSE 681

ray

• The color returned by reflective ray is attenuated by object’s
shininess and added to point color

• Limit number of recursive calls by including count and don’t
spawn ray if maximum is exceeded.

Reflective
Ray

k = E·N

S = kN - E

S

N

E
RE

CSE 681

ENNEEkNeSSERE −⋅=−+=++=)(2)(2

Reflective Ray Tracing

Color shade(ray,recursionDepth)
{

intersect objects to get point, normal, object
If (intersection) {

c = ambient color

CSE 681

Compute reflective ray, R, based on ray and normal
For each light source

Compute and add in diffuse and specular components to c
If ((recursionDepth < maxRecursion) && (object is shiny))

c += object.shininess * shade(R,recursionDepth+1)
}
Else c = backgroundColor;
Return c

}

3

Reflective Ray Tracing

L1

L2

n2

R2

R1

CSE 681

n1

ray

L1

WARNING !

Be careful not to have spawned reflection ray immediately

intersect the object it is leaving!

CSE 681

Should be no intersection

Refractive Ray Tracing

Same idea as Reflective ray tracing – spawn a secondary ray

The direction of the spawned ray is in the direction of the
incoming ray altered a little bit

CSE 681

Once this direction is computed, then the shade routine is called
recursively, just as with reflective rays.

The alteration is based on the material that the ray is leaving
(e.g. air) and the material that the ray is entering (e.g., glass)

Refractive Ray Tracing

n
dir

Medium c1
θ1

CSE 681

Snell’s Law

Medium c2

θ2
Τ2

)sin()sin(2211 θθ nn =

4

Refractive Ray Direction
cos(θ1) = -dir·n
sin(θ1) = sqrt(1- cos2(θ1))
sin(θ2) = n1*sin(θ1)/n2

nθ
1

θ

dir

CSE 681

cos(θ2) = sqrt(1 - sin2(θ2))
cos(θ2) = sqrt(1 - (n1*sin(θ1)/n2)2)
cos(θ2) = sqrt(1 - (n1/n2)2* (1- cos2(θ1)))
cos(θ2) = sqrt(1 - (n1/n2)2* (1- (dir·n)2)

NOTE: if radical is negative, no refraction!

θ2

)sin()sin(2211 θθ nn =

Refractive Ray Direction

Go cos(θ2) in the -n direction

dir

n

Go sin(θ2) in the orthogonal direction
(while still in the plane of dir and n)

θ1

CSE 681

And scaled by sin(θ2) is: (n1/n2)(dir-(dir·n)n)

T = (n1/n2)dir - (n1/n2)(dir·n)n - cos(θ2)n

dir

This direction (scaled by sin(θ1)) is: dir - (dir·n)n
(while still in the plane of dir and n)

Recursive Ray Tracing
Color shade(ray,recursionDepth)
{
intersect objects…
compute R …
Process each light source …
If (recursionDepth < maxRecursion) {

CSE 681

If (object is shiny) c += shininess * shade(R, recursionDepth+1)
If (object is transmittive) {

Compute refractive ray, T, based on ray, normal, and Snell constants
c = (1-transmittive)*c + transmittive * shade(T, recursionDepth+1)

}
}
Return c

}

Refractive Intersection Normal

CSE 681

5

Recursive Ray Tracing

nray
R1

CSE 681

T3

T1 R2

R3

T2

Reflectivity varies with incident angle

NOTE: refraction is really wavelength dependent
(where rainbows come from).

CSE 681

Fresnel equations

5
00)cos1)(1()(θθ −−+= RRRSchlick approximation:

R0 is reflectance at normal incidence: 8.00 =R

From book:
IF (p is on a dielectric) THEN
r = reflect(d,n)
IF (d.n<0) THEN {

refract(d,n,n2,t)
c=-d.n
kr=kg=kb=1

}
Else {

kr=exp(-art)
k =exp(-a t)

Assume one of the ni
is always 1 (air);
Call the other one n2

CSE 681

kg exp(agt)
kb=exp(-abt)
If refract(d,-n,1/n,t) then c=t.n
Else return k*color(p+tr)

}
R0=(n2-1)2/(n2+1) 2

R= R0+(1- R0)(1-c)5

Return k(Rcolor(p+tr)+(1-R)color(p+tt))

Also uses Beer’s Law
to attenuate light
passing through
material (p. 214):
I(s)=I(0)ea

