
Reflection and RefractionReflection and Refraction

CSE 681

Review: Illuminate routine

Given first intersection of ray with object
p - pointp p
obj - object it intersects including material properties

Color
reflectivityreflectivity

n - normal vector of object at that point

C l l t th l f th t i tCalculate the color of that point

Color = illuminate(p,obj,n)

CSE 681

Color = illuminate(p,obj,n)
Need:Need:

•Position in space that is to be illuminated
•To form vectors to light, camera, etc.

•Normal vector
•To form reflection vector, compute angle to surface

A d i l di

•Access to object’s material properties
•Color, Reflection coefficients, specular power

•Access to scene data including
•Lights: position, type, color, etc
•Camera: position
•Other objects (shadows reflections etc)

CSE 681

•Other objects (shadows, reflections, etc.)

Review: Illumination routineReview: Illumination routine
Directional/Point/Warn
Intensity

L

Intensity
Color
[Direction [Hood Angle]]

RE

Color
N

E

Ambient: a
Color

E Diffuse: LN ⋅

Specular: () f
ERL ⋅

CSE 681

ray Specular: ()ERL

Introduce SHADE routine
to prepare for recusive organization

For each pixel
Compute ray, R, from eye through pixel
C h d (R)C = shade(R)
Pixel.color = C

Color shade(R)
{

intersect objects – get closest intersection
bi tc = ambient

For each light source
Add in diffuse and specular components to c

Return c

CSE 681

Return c
}

Reflective Ray TracingReflective Ray Tracing
It include reflection effects, in shade routine:

• Compute color of intersection point, just like before

• If object is shiny, spawn a reflective ray and call shade on that
ray

• The color returned by reflective ray is attenuated by object’s
shininess and added to point color

• Limit number of recursive calls by including count and don’t
spawn ray if maximum is exceeded.

CSE 681

ReflectiveReflective
Ray

S

N
y

S = kN - E

S

RE

k = E·NE

ENNEEkNeSSERE −⋅=−+=++=)(2)(2

CSE 681

E)()(

Reflective Ray TracingReflective Ray Tracing

Color shade(ray,recursionDepth)
{
intersect objects to get point, normal, object
If (i t ti) {If (intersection) {
c = ambient color
Compute reflective ray, R, based on ray and normal
For each light sourceFor each light source
Compute and add in diffuse and specular components to c

If ((recursionDepth < maxRecursion) && (object is shiny))
c += object.shininess * shade(R,recursionDepth+1)j (, p)

}
Else c = backgroundColor;
Return c

CSE 681

}

Reflective Ray TracingReflective Ray Tracing

R2
L2

n2

R2

n1
L1

n2
R1

ray

CSE 681

y

WARNING !WARNING !

B f l h d fl i i di lBe careful not to have spawned reflection ray immediately

intersect the object it is leaving!

Should be no intersection

CSE 681

S ou d be o e sec o

Refractive Ray TracingRefractive Ray Tracing

Same idea as Reflective ray tracing spawn a secondary raySame idea as Reflective ray tracing – spawn a secondary ray

Th di ti f th d i i th di ti f thThe direction of the spawned ray is in the direction of the
incoming ray altered a little bit

The alteration is based on the material that the ray is leaving
(e.g. air) and the material that the ray is entering (e.g., glass)

Once this direction is computed, then the shade routine is called
recursively, just as with reflective rays.

CSE 681

y, j y

Refractive Ray TracingRefractive Ray Tracing

di
n

dir

Medium c1
θ1

1

Medium cMedium c2

θ2
Τ2

S ll’ L

2

)sin()sin(θθ nn =

CSE 681

Snell’s Law)sin()sin(2211 θθ nn =

Refractive Ray Direction
dir

cos(θ1) = -dir·n
sin(θ1) = sqrt(1- cos2(θ1))
i (θ) * i (θ)/

nθ
1

sin(θ2) = n1*sin(θ1)/n2

cos(θ) = sqrt(1 sin2(θ))
θ2

)i ()i (θθcos(θ2) = sqrt(1 - sin2(θ2))
cos(θ2) = sqrt(1 - (n1*sin(θ1)/n2)2)
cos(θ2) = sqrt(1 - (n1/n2)2* (1- cos2(θ1)))

)sin()sin(2211 θθ nn =

(2) q ((1 2) ((1)))
cos(θ2) = sqrt(1 - (n1/n2)2* (1- (dir·n)2)

CSE 681

NOTE: if radical is negative, no refraction!

Refractive Ray Direction

Go cos(θ2) in the -n direction
n

dir

This direction (scaled by sin(θ)) is: dir - (dir·n)n

Go sin(θ2) in the orthogonal direction
(while still in the plane of dir and n)

θ1

And scaled by sin(θ2) is: (n1/n2)(dir-(dir·n)n)

This direction (scaled by sin(θ1)) is: dir - (dir n)n

T = (n1/n2)dir - (n1/n2)(dir·n)n - cos(θ2)n

CSE 681

Recursive Ray TracingRecursive Ray Tracing
Color shade(ray,recursionDepth)
{{
intersect objects…
compute R …
P h li htProcess each light source …
If (recursionDepth < maxRecursion) {

If (object is shiny) c += shininess * shade(R, recursionDepth+1)
If (object is transmittive) {If (object is transmittive) {

Compute refractive ray, T, based on ray, normal, and Snell constants
c = (1-transmittive)*c + transmittive * shade(T, recursionDepth+1)

}}
}
Return c

}

CSE 681

}

Refractive Intersection NormalRefractive Intersection Normal

CSE 681

Recursive Ray TracingRecursive Ray Tracing

nnray
R1

T1T1 R2

T3

T2

CSE 681

T3
R3

Reflectivity varies with incident angle

NOTE: refraction is really wavelength dependent
(where rainbows come from)(where rainbows come from).

Fresnel equations

5
00)cos1)(1()(θθ −−+= RRRSchlick approximation:

R0 is reflectance at normal incidence: 8.00 =R

CSE 681

b k
IF (p is on a dielectric) THEN

From book:
IF (p is on a dielectric) THEN
r = reflect(d,n)
IF (d.n<0) THEN {

refract(d,n,n2,t)
c=-d.n
kr=kg=kb=1

}
Else {

Assume one of the ni
is always 1 (air); {

kr=exp(-art)
kg=exp(-agt)
kb=exp(-abt)
If refract(d -n 1/n t) then c=t n

Call the other one n2

If refract(d,-n,1/n,t) then c=t.n
Else return k*color(p+tr)

}
R0=(n2-1)2/(n2+1) 2

Also uses Beer’s Law
to attenuate light

R= R0+(1- R0)(1-c)5

Return k(Rcolor(p+tr)+(1-R)color(p+tt))

to attenuate light
passing through
material (p. 214):
I() I(0) a

CSE 681

I(s)=I(0)ea

