Simple Illumination

Types

Ambient lighting

- indirect light hitting the object by reflecting off of other surfaces - color of surface reflecting it
Diffuse
light reflecting off the object by being absorbed by the surface (subsurface scattering) and reemitted equally in all directions

Specular
light reflecting immediately off the surface - directional and color of light source

Ambient

Radiosity - calculate amount of each surface visible from given point on object and propagate reflected light through environment

Approximation - use constant as amount of indirect Light hitting each surface and

- Add to diffuse light hitting object

Or

- Reflect portion of ambient light (OpenGL)

Diffuse

Light hitting surface direct from light source

Scatters equally in all direction (get absorbed in surface and emerges in random direction)

Because it is absorbed, the reflected light is the color of the object

Diffuse

Light

Amount of incoming light is function of incoming direction

Diffuse

Specular

Light hitting surface direct from light source

It reflects directly off of surface of object and is reflected primarily at angle from normal equal to angle coming in (incident angle)

Because it is not absorbed, the reflected light is the color of the light source

Specular

Phong Model for Specular Reflection: Calculate direction of reglection and use cosine falloff as view deviates from that direction

Specular

Specular

$$
R_{E}-\text { refection vector of } E
$$

R_{L} - refection vector of L
E

$$
\operatorname{Cos}(\theta)=\mathrm{E} \cdot \mathrm{R}_{\mathrm{L}}=\mathrm{L} \cdot \mathrm{R}_{\mathrm{E}}
$$

Raise it to a power (material property) to control how fast the specular component falls

Illumination Model

$$
C=K_{d}(a+I(N \cdot L)) c_{o b j}+K_{s}\left(R_{E} \cdot L\right)^{f} I(1,1,1)
$$

Assume single, white light source

Add coefficient of reflectivity for diffuse, K_{d}, and specular light, K_{s}

Add intensity of light, I

Assume ambient term is incoming light to be diffusely reflected

Multiple Light Sources

$$
C=K_{d}\left(a+\sum_{i}\left[\delta_{i} I_{i}\left(N \cdot L_{i}\right)\right]\right) c_{o b j}+K_{s} \sum_{i}\left[\delta_{i} I_{i}\left(R_{E} \cdot L_{i}\right)^{f} c_{i}\right]
$$

Add in the effects of a light source if and only if the face is a FRONT FACE with respect to the light based on sign of $N \cdot \mathrm{~L}$ $\delta_{\mathrm{i}}=0$ if light is behind face
$=1$ if light is in front of face

Assume multiple colored light sources

Diffuse - color of object ($\mathrm{C}_{\mathrm{obj}}$)
Specular - color of light source (c_{i})
Use $L \cdot R_{E}$ to avoid recomputing reflection vector

Some of the Options

Ambient term wavelength dependent
Each light contributes to ambient light: ambient ${ }_{\mathrm{i}}$
Light has different diffuse and specular intensities
Calculate Light reflection vector instead of Eye reflection vector
Use bisecting vector between L and E, compare to N for specular (see next slide)
Reflection coefficients wavelength dependent (separate r, g, b values)
Light color affects diffuse color

Specular

Alternative specular calculation

H - bisects angle made by L and E
Compare H to N (cosine of angle)
E

$$
\theta / 2=\alpha
$$

$$
\mathrm{H}=(\mathrm{E}+\mathrm{L}) /|\mathrm{E}+\mathrm{L}|
$$

$(H \cdot N)^{f}$ color $_{\text {light }}$

