
1

Ray Tracing
Geometry

CSE 681

Geometry

The Camera Model
• Based on a simpile

pin-hole camera model
– Simplest lens model

Pure geometric optics– Pure geometric optics –
based on similar
triangles

– Perfect image if hole
infinitely small

– Inverted image

CSE 681

pin-hole camera

simplified pin-hole camera

Basic Ray Tracing Algorithm
for every pixel {

cast a ray from the eye through pixel
for every object in the scene

find intersections with the ray
keep it if closest

}
compute color at the intersection point

}

CSE 681

Construct a Ray

• 3D parametric line
r(t) = eye + t (p-eye)

r(t): ray equation

eye

p
r(t)

t=0

r(t): ray equation
eye: eye (camera) position
p: pixel position
t: ray parameter

CSE 681

Question: How to calculate the pixel position P?

2

What are given?
• Camera (eye) position
• View direction or center of interest
• Camera orientation (which way is up?) (y p)

– specified by an “up” vector
• Field of view + aspect ratio
• Distance to the image plane
• Pixel resolutions in x and y

CSE 681

eye

“up” vector

ray

Camera Setup
v

n
View
direction

“up” vector

w

CSE 681

u

We need to have a ‘view
coordinate system, i.e., compute
the u, v, w vectors

u v w
w image plane
Eye + w goes through the image plane center

Camera Setup
v

View
direction

“up” vector

w

CSE 681
CSE 681

u

w: known
u = w x “up”
v = u x w

“up” may not be perpendicular to w
x: cross product

Pixel Calculation
Coordinate (in u,v,n space) of upper left corner of screen

u
v yres

Eye + w

CSE 681

Assume virtual screen is one
unit away (D=1) in w direction

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

w
xres

3

Pixel Calculation
Coordinate (in u,v,n space) of upper left corner of screen

u
v yres

Eye + w

CSE 681CSE 681

Assume virtual screen is one
unit away (D=1) in w direction

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

w
xres

How do we calculate
PixelWidth and PixelHeight?

Camera Setup

(yres/2) * pixelHeight

CSE 681

D

Tan(θ/2) = yres*pixelHeight/2D

pixelHeight = 2*Tan(θy/2) *D/yres

pixelWidth = 2*Tan(θx/2) *D/xres

Screen Placement

How do images differ if the
resolution doesn’t change?

CSE 681

Assume virtual screen is one
unit away (D=1) in w direction

Pixel Calculation

Tan(θ/2) = yres*pixelHeight/2

pixelHeight = 2*Tan(θy/2) /yres

pixelWidth 2*Tan(θ /2) /xres

CSE 681

pixelWidth = 2*Tan(θx/2) /xres

Pixel AspectRatio = pixelWidth/pixelHeight

Coordinate (in xyz space) of upper left corner of screen = ?

4

Pixel Calculation
Coordinate (in xyz space) of upper left corner of screen = ?

Tan(θ/2) = yres*pixelHeight/2

pixelHeight = 2*Tan(θy/2) /yres

CSE 681

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

u
v

w

pixelWidth = 2*Tan(θx/2) /xres

Pixel Calculation
Coordinate (in xyz space) of upper left pixel center = ?

CSE 681

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v

+ (pixelWidth/2)*u - (pixelHeight/2)*v

Interate through pixel Centers
pixelCenter =
scanlineStart = Eye +

w -
(xres/2)*PixelWidth*u +
(/2)*Pi lH i ht * +

CSE 681

(yres/2)*PixelHeight *v +
(pixelWidth/2)*u -
(pixelHeight/2)*v

pixelCenter += pixelWidth * u

scanlineStart -= pixelHeight * v

Pixel loops

ScenlineStart = [from previous slide]
For each scanline {

pixelCenter = scanlineStart

CSE 681

For each pixel across {
form ray from camera through pixel
….
pixelCenter += pixelWidth*u

}
scanlineStart -= pixelHeight*v

}

5

Process Objects
For each pixel {

Form ray from eye through pixel
distancemin = infinity
For each object {

If (distance=intersect(ray,object)) {
If (distance< distancemin) {

CSE 681

(min) {
closestObject = object
distancemin = distance

}
}

}
Color pixel according to intersection information

}

After all objects are tested

If (distancemin > infinityThreshold) {
pixelColor = background color

else
pixelColor = color of object at distance i along ray

CSE 681

pixelColor color of object at distancemin along ray

d

rayeye object

Ray-Sphere Intersection - geometric
Ray

k d+k = (C-eye) · Ray
t= |C-eye|

Knowns
C, r
Eye
R

CSE 681

C
rd

k
s

teye
r2 = k2+ s2

t2= (k+d) 2 + s2

d k (C eye) RayRay

d = (k+d) - k

Ray-Sphere Intersection - algebraic
x2 + y2 + z2 = r2

P(t) = eye + t*Ray

Substitute definition of p into first equation:

CSE 681

(eye.x+ t *ray.x) 2 + (eye.y+ t *ray.y)2 + (eye.z+ t *ray.z) 2 = r2

Expand squared terms and collect terms based on powers of u:

A* t 2 + B* t + C = 0

Substitute definition of p into first equation:

6

Ray-Sphere Intersection (cont’d)
For a sphere with its center at c

A sphere with center c = (xc,yc,zc) and radius R can be
represented as:

2 2 2 2

CSE 681

(x-xc)2 + (y-yc)2 + (z-zc)2 – R2 = 0

For a point p on the sphere, we can write the above in vector
form:

(p-c).(p-c) – R2 = 0 (note ‘.’ is a dot product)

Solve p similarly

Quadratic Equation

When solving a quadratic equation

at2 + bt + c = 0

CSE 681

Discriminant:

And Solution:

Ray-Sphere Intersection

b2 – 4ac <0 : No intersection
b2 – 4ac >0 : Two solutions (enter and exit)
b2 – 4ac = 0 : One solution (ray grazes the sphere)

CSE 681

Determine Color

N

Use z-component of
normalized normal vector

FOR LAB #1

Clamp to [0.3..1.0]

CSE 681

eye

ray

objectColor*Nz

What’s the normal
at a point on the
sphere?

