The Camera Model

Ray Tracing Geometry

- Based on a simpile
pin-hole camera model
- Simplest lens model
- Pure geometric optics based on similar triangles
- Perfect image if hole infinitely small
- Inverted image

pin-hole camera

simplified pin-hole camera
CSE 681

Basic Ray Tracing Algorithm

for every pixel \{
cast a ray from the eye through pixel
for every object in the scene
find intersections with the ray
keep it if closest
\}
compute color at the intersection point \}

Construct a Ray

- 3D parametric line
$r(t)=$ eye $+t(p-e y e)$
$r(t)$: ray equation
eye: eye (camera) position
p : pixel position
t: ray parameter
Question: How to calculate the pixel position P?

What are given?

- Camera (eye) position
- View direction or center of interest
- Camera orientation (which way is up?)
- specified by an "up" vector
- Field of view + aspect ratio
- Distance to the image plane
- Pixel resolutions in x and y

Pixel Calculation

Coordinate (in u,v,n space) of upper left corner of screen

Assume virtual screen is one
unit away $(\mathrm{D}=1)$ in w direction

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v CSE 681

Pixel Calculation

Coordinate (in u,v,n space) of upper left corner of screen

How do we calculate
Assume virtual screen is one unit away ($\mathrm{D}=1$) in w direction

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v
CSE 681

Screen Placement

How do images differ if the resolution doesn't change?

Assume virtual screen is one unit away ($\mathrm{D}=1$) in w direction

Pixel Calculation

$\operatorname{Tan}(\theta / 2)=$ yres*pixelHeight/2
pixelHeight $=2 * \operatorname{Tan}\left(\theta_{\mathrm{y}} / 2\right) /$ yres
pixelWidth $=2 * \operatorname{Tan}\left(\theta_{x} / 2\right) /$ xres

> Pixel AspectRatio = pixelWidth/pixelHeight

Coordinate (in xyz space) of upper left corner of screen = ?

Pixel Calculation

Coordinate (in xyz space) of upper left corner of screen = ?

$\operatorname{Tan}(\theta / 2)=$ yres*pixelHeight/2 pixelHeight $=2 * \operatorname{Tan}\left(\theta_{y} / 2\right) /$ yres pixelWidth $=2 * \operatorname{Tan}\left(\theta_{x} / 2\right) / x r e s$

Pixel Calculation

Coordinate (in xyz space) of upper left pixel center = ?

Eye + w - (xres/2)*PixelWidth*u + (yres/2)*PixelHeight *v
$+($ pixelWidth/2)*u - (pixelHeight/2)*v

CSE 681

Pixel loops

ScenlineStart = [from previous slide]
For each scanline \{
pixelCenter $=$ scanlineStart
For each pixel across \{
form ray from camera through pixel
pixelCenter += pixelWidth*u
\}
scanlineStart $-=$ pixelHeight*v
\}
pixelCenter $+=$ pixelWidth * u
scanlineStart -= pixelHeight ${ }^{*}$ v

CSE 681

Process Objects

For each pixel \{
Form ray from eye through pixel
distance $_{\min }=$ infinity
For each object \{
If (distance=intersect(ray,object)) \{
If (distance< distance ${ }_{\min }$) \{
closestObject = object
distance $_{\text {min }}=$ distance
\}

\}

\}
Color pixel according to intersection information
\}

After all objects are tested

If (distance ${ }_{\min }>$ infinityThreshold) $^{\text {\{ }}$
pixelColor = background color
else
pixelColor $=$ color of object at distance $\mathrm{m}_{\text {min }}$ along ray

Ray-Sphere Intersection - geometric

Ray-Sphere Intersection - algebraic

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=r^{2} \\
& P(t)=\text { eye }+t^{*} \text { Ray }
\end{aligned}
$$

Substitute definition of p into first equation:
$(\text { eye. } \mathrm{x}+\mathrm{t} \text { *ray. })^{2}+(\text { eye. } \mathrm{y}+\mathrm{t} \text { *ray.y })^{2}+(\text { eye. } \mathrm{z}+\mathrm{t} * \text { ray. } \mathrm{z})^{2}=\mathrm{r}^{2}$
Expand squared terms and collect terms based on powers of u :

$$
A^{*} t^{2}+B^{*} t+C=0
$$

CSE 681

Ray-Sphere Intersection (cont’d)

For a sphere with its center at c
A sphere with center $\mathrm{c}=(\mathrm{xc}, \mathrm{yc}, \mathrm{zc})$ and radius R can be represented as:

$$
(x-x c)^{2}+(y-y c)^{2}+(z-z c)^{2}-R^{2}=0
$$

For a point p on the sphere, we can write the above in vector form:
(p-c).(p-c) $-\mathrm{R}^{2}=0$ (note ' \cdot is a dot product)

Solve p similarly

Quadratic Equation

When solving a quadratic equation
$a t^{2}+b t+c=0$

Discriminant:

$$
d=\sqrt{b^{2}-4 a c}
$$

And Solution:

$$
t_{ \pm}=\frac{-b \pm d}{2 a}
$$

Ray-Sphere Intersection

Determine Color

FOR LAB \#1

