Review:
Transformations
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Transformations - Modeling
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Transformations

» Modeling transformations

* build complex models by positioning (transforming) simple
components relative to each other

* Viewing transformations
« placing virtual camera in the world

« transformation from world coordinates to camera
coordinates

« Perspective projection of 3D coordinates to 2D
* Animation
« vary transformations over time to create motion
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Transformations - Viewing
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Modeling Transformations Affine Transformations

Transform objects/points Transform coordinate system Transform P = (X, y, z) to Q = (X’, y’, 2’) by M.
Affine transformation:

X'= M, X+m,y+m,z+m,
Y'= My X+ My, Y +MypZ + My,
Z'= My X+ My, Y + My Z + My,
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Translation Scaling

Translation by (t,, t,, t,): Scaling by (s,, Sy, S,):

Uniform v. non-uniform scaling
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Rotation

Rotation counter-clockwise by angle 6
around the z-axis:

X’ = x cos(0) —y sin(0)
y’ =xsin(0) +y cos(6)
7’=12

Proof:

X =r cos(o)
y =rsin(a)

X" =r cos(a + 0) =r cos(a) cos() — r sin(a) sin(B) = x cos(B) -y sin(6)
y’ =rsin(a + 0) = r cos(c) sin(B) + r sin(a) cos(0) = x sin(0) + y cos(B)
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Rotation around y-axis

Rotation counter-clockwise by angle 6
around the y-axis:
y'=y
2z’ =z cos(D) — x sin(6)
X’ =z sin(0) + x cos(0)
Or
X’ = x cos(B) + z sin(6)
y' =y
z’ =-xsin(0) + z cos(0)

Rotation around x-axis

Rotation counter-clockwise by angle 6
around the x-axis:
X' =X
y’ =y cos(6) — z sin(0)
Z’ =y sin(0) + z cos(0)
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Matrix Multiplication

Scaling by (s,, sy, S,):
X =8, X
Yy =s,y
7’=5s,2

Rotation counter-clockwise by
angle 6 around the z-axis:

X’ = x cos(0) -y sin(0)
y’ =xsin(0) +y cos(6)
z’=1z

Translation by (t,, t,, t,):
X =X+t
y=y+t,
7’7=7+t,
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Homogeneous Coordinates . )
Rotation Matrices

Represent P by (X, Y, z, 1) and Q by (x’, y’, z’, 1).

(Homogeneous coordinates.)

Translation by (t,, t,, t,):
X=X+t
y' =y+t,
7’=7+t,

Scaling by (s,, sy, S,):
X =5, X

Yy =8,y
7’=5,2
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Affine transformation:
X' =My X+ My +MygZ +myy
Y =My X+ My Y + My Z + My
Z =My X+ Mgy + My Z + My,

Transformation Matrix:

Rotation counter-clockwise by angle 6 around the x-axis:
X' =X
y’ =y cos(0) —z sin(0)
2’ =y sin(0) + z cos(0)

Rotation counter-clockwise by angle 6 around the y-axis:
’ cos(0) + z sin(6)

2’ =—xsin(0) + z cos(0)

Rotation counter-clockwise by angle 6 around the z-axis:
X’ = x cos(0) —y sin(0)
y’ =xsin(6) +y cos(6)
7’=z
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Shearing

Shear along the x-axis:
X =X+ hy
y'=y
7=z
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Reflection

Reflection across the x-axis:
X =(-1) x
y' =y
z’=1z

Reflection is a special case of scaling!
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Inverse Transformations

Translation
Scale
Rotation

Shear

Elementary Transformations

 Translation
 Rotation

* Scaling
 Shear

What about inverses?
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Compose Transformations

« Scale by (2, 1, 1)
« Translate by (20, 5, 0)

« Rotate by 30° counter-clockwise
around the z-axis

« Translate by (0, -50, 0)




Compose Transformation Matrices

« Scale by (2, 1, 1);
Translate by (20, 5, 0);

Rotate by 30° counter-clockwise
around the z-axis;

« Translate by (0, -50, 0).

Order Matters!

Transformations are not necessarily commutative!

« Translate by (20, 0, 0). Rotate by 30°.
« Rotate by 30°. « Translate by (20, 0, 0).

Compose Transformation Matrices

« Scale by (2, 1, 1);
« Translate by (20, 5, 0);

Rotate by 30° counter-clockwise
around the z-axis;

« Translate by (0, -50, 0).

Order of Transformation Matrices

Apply transformation matrices from right to left.

« Translate by (20, 0, 0).
« Rotate by 30°.

Rotate by 30°.
« Translate by (20, 0, 0).
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Which transformations commute?

Translation and translation?
Scaling and scaling?
Rotation and rotation?
Translation and scaling?
Translation and rotation?
Scaling and rotation?
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Vectors

Vector V = (V,, V, V).
Homogeneous coordinates: (Vy, Vy, V,, 0).

Elementary transformations:
¢ Translation;

« Rotation;

« Scaling;

¢ Shear.

Theorem: Every affine transformation can be decomposed into elementary
operations.

Euler’s Theorem: Every rotation around the origin can be decomposed into a

rotation around the x-axis followed by a rotation around the y-axis followed
by a rotation around the z-axis. (or a single rotation about an arbitrary axis).
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Vectors

Rotation:

Scaling:

Translation:
(Note: No change.)
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Transform Parametric Line
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Affine Transformation of Lines

Line

transformed point on a line = point on transformed line

M[PW]" =MI[P, +uVv]
MI[PR, +uv] = M[PO]T +uM VT

Theorem: Affine transformations transform lines to lines.
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Affine Combinations
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Affine Combinations

M[R]" = M[aP +bQJ"
M[aP +bQ]" =M[aP]" +M[bQT"
M[aP]" +M[bQ]" =aM[P]" +aM[P]" = aP'+bQ'

Theorem: Affine transformations preserve affine combinations.
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Properties of Transformation Matrices

First column is how
(1,0,0,0) transforms

Second column is how
(0,1,0,0) transforms

Third column is how

Matrix holds how coordinate
axes transform and how
origin transforms
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Properties of Affine Transformations

Affine transformations map lines to lines;

Affine transformations preserve affine combinations;
Affine transformations preserve parallelism;

Affine transformations change volume by | Det(M) |;

Any affine transformation can be decomposed into
elementary transformations.

Affine transformations [does/does not] preserve angles?

Affine transformations [does/does not] preserve the
intersection of two lines?

Affine transformations [does/does not] preserve distances?
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Properties of Pure Rotation Matrices
Rows (columns) are orthogonal to each other
A row dot product any other row = 0
Each row (column) dot product times itself = 1

RT=R?

CSE 681




Coordinate Frame

z

Coordinate frame is given by origin ¢ and three mutually
orthogonal unit vectors, i, j, k - defined in (x,y,z) space

Mutually orthogonal (dot products): isj = ?; iek = ?; jek = 2.
Unit vectors (dot products): iei = ?; jej = ?; kek = 2.

Orientation

How do you test whether (i,j,k) is left handed or right handed?
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Orientation

Coordinate Transformations

Given object data points defined in the (i, j, k, ¢) coordinate frame,
Given the definition of (i, j, k, ¢) in (X, y, z) coordinates,

How do you determine the coordinates of the object data points in the
(X, Y, z, 0) frame?
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Coordinate change (Translation)

Change from (a,b,c,$) coordinates to
(X,,2,0) coordinates:

1. Move (a,b,c, ¢) to (x,y,z,0) and invert
2. Move data relative from (0,0,0) out to

¢ position by adding ¢
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bject Transformations

Given (i,j,k,p) defined in the (x,y,z,0) coordinate frame, Transform points
defined in the (i, j, k, ¢) coordinate frame to the (x,y,z,0) coordinate frame.
Rotate object to get x to line up with i, then translate to ¢

Coordinate change (Rotation)

z-axis rotation by 6

Change from (a,b,c,¢) coordinates to
(X,¥,2,0) coordinates:

1. Rotate (a,b,c) by O and invert
2. Rotate data by -0

Object Transformations

Affine transformation matrix:
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Coordinate Transformations

Given (i,j,k,9) defined in the (x,y,z,0) coordinate frame,

Transform points in (i,j,k,0) coordinate frame to (x,y,z, ¢) coordinate frame.

translate by - ¢, then rotate to align i with x — then invert

Coordinate Transformations

Apply RT to coordinate system
Apply (RT)! to data = T'R™?

Affine transformation matrix:

Coordinate Transformations

Composition of coordinate change

M; changes from coordinate frame (x,y,z,0) to (x’,y’,z’,0’).
M, changes from coordinate frame (x’,y’,2’,6’) to (.
Change from coordinate frame (x,y,z,0) to (x’*,y”’,z”*,0): ?
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Composition of transformations - example
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n is a unit normal vector to plane :

M is a non-uniform scale transformation matrix that only modifies x-
coordinates

If we just transform the n as a vector, then M nT =n’
But we want n’* — that has a non-zero y-coordinate value

ormations of normal vectors

n is a unit normal vector to plane .
M is an affine transformation matrix.
How is n transformed, to keep it perpendicular to the plane, under:
translation?
rotation by 6?
uniform scaling by s?
shearing or non-uniform scaling?
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Transformations of normal vectors

Planar equation: ax +by+cz+d=0.
Let N = (a, b, c, d). (Note: (a, b, c) is normal vector)

Let P =(x, Y, z, 1) be a point in plane .
Planar equation: N « P = 0.
M is an affine transformation matrix. (MT is M transpose.)

LetP’=MPT.

NPT=0;

N (M1M)PT= 0;

(N M) (M PT)

(NMY)PT=0;

So N’ = NM*

To put in column-vector form, (N’)T = (NM1)T = (M1)TNT

So N’ = ((MY)T NT)T and (M™)T is the transformation matrix to take NT into N*T
Note: If M is a rotation matrix, (M1)T = M.
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