

Vectors

Basics

Vectors

- Have a direction and a length
- Do not have a position in space

Normal vector

- Is 'normal', or perpendicular, to a surface
- Are usually unit-length, also called 'normalized'

Normalizing a Vector

- Compute the magnitude and divide through
- Produces a UNIT VECTOR
- Aka NORMALIZED VECTOR

Dot Product

Scalar Product
 $A \cdot B=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
 $A \cdot B=B \cdot A$
 $A \cdot B=A|B| \cos (\alpha)$

- If A and B are unit vectors, $A \cdot B=\cos (\alpha)$
- If A is unit vector, $A \cdot B=B \cos (\alpha)$ is the length of B projected onto A

Reflection Vector

In 3D, Reflect V about N to make R
Assume N is normalized

$R=V+2 S$
 $S=P-V$

$k=|P|=N \cdot V$
$P=k N=(V \cdot N) N$

$R=V+2(P-V)=V+2((V \cdot N) N-V)=2(V \cdot N) N-V$

Parametric Equation of Line

- P_{0} is point on line
- V is direction of line
- Generalizes to any dimension (2D, 3D, etc)
- As $0<\mathrm{u}<1.0, \mathrm{P}(\mathrm{u})$ goes from P_{0} to $\mathrm{P}_{0}+\mathrm{V}$

