Brief Review: Vectors

Vectors

- Basics
- Normalizing a vector => unit vector
- Dot product
- Cross product
- Reflection vector
- Parametric form of a line

Basics

Vectors

- Have a direction and a length
- Do not have a position in space

Normal vector

- Is 'normal', or perpendicular, to a surface
- Are usually unit-length, also called 'normalized'

Normalizing a Vector

- Compute the magnitude and divide through
- Produces a UNIT VECTOR
- Aka NORMALIZED VECTOR

To normalize (x,y,z) :

$$
\begin{aligned}
& \text { len }=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \left(\frac{x}{l e n} \frac{y}{l e n} \frac{z}{l e n}\right)
\end{aligned}
$$

Dot Product

Scalar Product $A \cdot B=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

$$
A \cdot B=B \cdot A
$$

$$
A \cdot B=|A| B \mid \cos (\alpha)
$$

- If A and B are unit vectors, $\mathrm{A} \cdot \mathrm{B}=\cos (\alpha)$
- If A is unit vector, $A \cdot B=|B| \cos (\alpha)$ is the length of B projected onto A

Cross Product

Vector Product $A \times B=\left(A_{y} B_{z}-A_{z} B_{y}, A_{z} B_{x}-A_{x} B_{z,} A_{x} B_{y}-A_{y} B_{x}\right)$

$$
A \times B=-B \times A
$$

- $A \times B$ is orthogonal to plane defined by A and B
- With length $|A \times B|=|A||B| \sin (\alpha)$
- If A and B are unit vectors, $|A \times B|=\sin (\alpha)$
- If \mathbf{B} is unit vector, $|A \times B|$ is perpendicular distance from A to B

Reflection Vector

In 3D, Reflect V about N to make R
Assume N is normalized

$$
\begin{aligned}
& R=V+2 S \\
& S=P-V \\
& k=|P|=N \cdot V \\
& P=k N=(V \cdot N) N
\end{aligned}
$$

$$
R=V+2(P-V)=V+2((V \cdot N) N-V)=2(V \cdot N) N-V
$$

Parametric Equation of Line

$$
P(u)=P_{0}+u V
$$

- P_{0} is point on line
- V is direction of line
- Generalizes to any dimension (2D, 3D, etc)
- As $0<\mathrm{u}<1.0, \mathrm{P}(\mathrm{u})$ goes from P_{0} to $\mathrm{P}_{0}+\mathrm{V}$

