Introduction to Ray Tracing

Ray Tracing

- Shoot a ray through each pixel;
- Find first object intersected by ray.

- Compute ray. (More linear algebra.)
- Compute ray-object intersection.

Ray Tracing

- For each pixel
- Form ray from eye through pixel
- For each object
- Intersection ray with object
- If intersection is closer than any other so far, save it
- Color pixel with shade of object at point of intersection

Example

CSE 681

Shade of Object at Point

- Ambient
- Diffuse
- Specular
- Shadows
- Material properties
- Texture
- Reflections
- Transparency (refraction)

Diffuse Reflection

- Light that gets absorbed into the objects surface
- Gets reflected equally in all directions
- Need to calculate angle of incoming light to surface

Diffuse Reflection

- Calculate amount/color of light shining on an object.
- Depends on angle between light ray and surface normal.

Example: Diffuse reflection

Specular Reflection

- Calculate light bouncing off object to your eye;
- Angle of incidence = angle of reflection.
- Most intense at angle of reflection; falls off from there

Example: Specular Reflection

What’s wrong with this picture?

Shadows

- Determine when light ray is blocked from reaching object.
- Ray-object intersection calculation

For each pixel for each object for each light source for each object

Reflection

Transparency

Transparency \& Refraction

- Ray changes direction in transition between materials
- Material properties give ratio of in/out angles

Transparency \& Refraction

Recursive Ray Tracing

Polyhedral Models

Texture Mapping

Sampling and Aliasing

Problem: Representing pixel by a single ray.

Anti-Aliasing

Solution:

- Use multiple rays;
- Average values calculated by rays.

Sampling and Aliasing

Problem: Sampling frequency may match image frequency.

Random/Stochastic Sampling

Randomly sample rays through pixel.

Efficiency

- $1280 \times 1024=1,310,720 \approx 10^{6}$ pixels.
- 10^{6} initial rays.
- 10^{6} reflection rays.
- Potentially 10^{6} refraction rays.
- 3×10^{6} shadow rays (3 lights.)

Next level:

- Potentially 4×10^{6} refraction/reflection rays.

1,000,000 polygons.
$10^{7} \times 10^{6}=10^{13}$ ray-polygon intersection calculations.

Intersection Data Structures

1. Coarse test to see if ray could *possibly* intersection object
2. Divide space up - sort objects into spatial buckets - trace ray from bucket to bucket

Bounding Boxes

Spatial Subdivision

Theory: sampling the environment

1. Rendering as sampling problem
2. Expected value \& variance
3. Techniques to efficiently reduce variance

Major Course Topics

- Object \& coordinate transformations.
- Ray-object intersections.
- Diffuse \& specular reflection.
- Shadows.
- Opacity \& refraction.
- Shadows.
- Recursive ray tracing.
- Polyhedral models.
- Texture mapping.
- Anti-aliasing and sampling.
- Bounding boxes and spatial subdivision.
- Sampling theory.

