
1

Okay, you have learned …

OpenGL drawing
Viewport and World Window setup

main()
{

glViewport(0,0,300,200);
glMatrixMode(GL_PROJECTION);
glLoadIndentity();
gluOrtho2D(-1,1,-1,1);
glBegin(GL_QUADS);
glColor3f(1,1,0);
glVertex2i(-0.5,-0.5);
glVertex2i(+0.5,0);
glVertex2i(+0.5,+0.5);
glVertex2i(-0.5,+0.5);
glEnd();

}

2D Graphics Pipeline

Object
Local Coordinates

Object
World Coordinates

Modeling
transformation

(next page)

Graphics processing consists of many stages:

2D Graphics Pipeline (2)

Object
World Coordinates

Object
subset

window to
viewport
mapping

Object
Screen coordinatesRasterizationDisplay

Applying
world window

Clipping

Simple 2D Drawing Pipeline

Clipping and Rasterization

OpenGL does these for you – no explicit OpenGL
functions needed for doing clipping and rasterization

Clipping – Remove objects that are outside the
world window

Rasterization (scan conversion) – Convert high
level object descriptions to pixel colors in the frame
buffer

2

2D Point Clipping

Determine whether a
point (x,y) is inside or
outside of the world
window?

(xmin, ymin)

(xmax, ymax)

If (xmin <= x <= xmax)
and (ymin <= y <= ymax)

then the point (x,y) is inside
else the point is outside

2D Line Clipping

Determine whether a
line is inside, outside, or
partially inside

If a line is partially
inside, we need to
display the inside
segment

(xmin, ymin)

(xmax, ymax)

Trivial Accept Case

Lines that are clearly inside
the world window - what are
they?

(Xmin, Ymin)

(Xmax, Ymax)

p1

p2 Xmin <= P1.x, P2.x <=xmax
Ymin <=P1.y, P2.y <= Ymax

Trivial Reject Case

Lines that are clearly
outside the world
window – what are
they?

p1

p2

p1.x, p2.x <= Xmin OR
p1.x, p2.x >= Xmax OR
p1.y, p2.y <= ymin OR
p1.y, p2.y >= ymax

3

Non-Trivial Cases

Lines that cannot be trivially
rejected or accepted

One point inside, one point
outside
Both points are outside, but
not “trivially” outside

Need to find the line
segments that are inside

p1

p2

Non-trivial case clipping

Compute the line/window
boundary edges intersection
There will be four
intersections, but only one
or two are on the window
edges
These two points are the
end points of the desired
line segment

Rasterization (Scan Conversion)

Convert high-level geometry description
to pixel colors in the frame buffer

Viewport
Transformation Rasterization

Rasterization Algorithms

A fundamental computer graphics function
Determine the pixels’ colors, illuminations, textures,
etc.
Implemented by graphics hardware
Rasterization algorithms

Lines
Circles
Triangles
Polygons

4

Rasterize Lines

Why learn this?
Understand the discrete nature of
computer graphics
Write pure device independent graphics

programs (Palm graphics)
Become a graphics system developer

Line Drawing Algorithm (1)

0 1 2 3 4 5 6 7 8 9 10 11 12

8
7
6
5
4
3
2
1

Line: (3,2) -> (9,6)

?

Line Drawing Algorithm (2)

Slope-intercept line equation
Y = mx + b
Given two end points (x0,y0), (x1, y1),
how to compute m and b?

m = (y1-y0) / (x1 – x0)
= dy / dx

(x0,y0)

(x1,y1)

dx

dy

b = y1 – m * x1

Line Drawing Algorithm (3)

(x0,y0)

(x1,y1)

dx

dy

Given the line equation y = mx + b, and end points (x0,y0)
(x1, y1)
Walk through the line: starting at (x0,y0)
If we choose the next point in the line as X = x0 + Δx

Y = ?

Y = y0 + Δx * m
= y0 + Δx * (dy/dx)

5

Line Drawing Algorithm (4)

(x0, y0)

X = x0 + 1 Y = y0 + 1 * m

Illuminate pixel (x, int(Y))

X = X + 1 Y = Y + 1 * m

Illuminate pixel (x, int(Y))

…

Until X == x1

(x1,y1) X = x0 Y = y0

Illuminate pixel (x, int(Y))

Line Drawing Algorithm (5)

How about a line like this?

Can we still increment X by 1
at each Step?

The answer is No. Why?

How to fix it ?

Increment Y

We don’t get enough samples

Line Drawing Algorihtm (6)

Y = y0 + 1 X = x0 + 1 * 1/m

Illuminate pixel (x, int(Y))

Y = Y + 1 X = X + 1 /m

Illuminate pixel (x, int(Y))

…

Until Y == y1

X = x0 Y = y0

Illuminate pixel (x, int(Y))
(x1,y1)

(x0,y0)

Line Drawing Algorithm (7)

The above is the simplest line drawing
algorithm
Not very efficient
Optimized algorithms such integer DDA
and Bresenhan algorithm (section 8.10)
are typically used
Not the focus of this course

