* Okay, you have learned ...

= OpenGL drawing
= Viewport and World Window setup

mainQ

glViewport(0,0,300,200) ;

T glMatrixiode(GL_PROJECTION) ;

glLoadIndentity();

gluortho2D(-1,1,-1,1);
glBegin(GL_QUADS);

a | . - glColor3f(1,1,0);
glVertex2i(-0.5,-0.5);
glVertex2i(+0.5,0);

T glVertex2i(+0.5,+0.5);
glVertex2i(-0.5,+0.5);
glEndQ;

- O

* 2D Graphics Pipeline

Graphics processing consists of many stages:

Modeling
transformation

(next page)

* 2D Graphics Pipeline (2)

Clipping

A .
world window

|
R [Restorzation]

* Clipping and Rasterization

= OpenGL does these for you — no explicit OpenGL
functions needed for doing clipping and rasterization

= Clipping — Remove objects that are outside the
world window

= Rasterization (scan conversion) — Convert high

level object descriptions to pixel colors in the frame
buffer




i 2D Point Clipping

(xmax, ymax)

(xmin, ymin)

= Determine whether a
point (x,y) is inside or
outside of the world
window?

If (xmin <= x <= xmax)
and (ymin <=y <= ymax)

then the point (x,y) is inside
else the point is outside

2

o 20 Line C

(xmin,

(xmax, ymax)

—

ymin)

D Line Clipping

= Determine whether a
line is inside, outside, or
partially inside

= If aline is partially
inside, we need to
display the inside
segment

i Trivial Accept Case

(Xmax, Ymax)

(Xmin, Ymin)

= Lines that are clearly inside
the world window - what are
they?

Xmin <= P1.X, P2.x <=Xmax
Ymin <=P1l.y, P2.y <= Ymax

i Trivial Reject Case

pl

p2

.

= Lines that are clearly
outside the world
window — what are
they?

= pl.x, p2.x <= Xmin OR
= pl.x, p2.x >= Xmax OR
=ply, p2.y <=ymin OR
= pl.y, p2.y >= ymax




i Non-Trivial Cases

= Lines that cannot be trivially
rejected or accepted

= One point inside, one point
outside

pl = Both points are outside, but
not “trivially” outside
= Need to find the line
segments that are inside

p2

i Non-trivial case clipping

= Compute the line/window
boundary edges intersection
5. = There will be four

/ intersections, but only one
/' or two are on the window
edges

/ = These two points are the
end points of the desired
line segment

i Rasterization (Scan Conversion)

= Convert high-level geometry description
to pixel colors in the frame buffer

M Rasterization

=]

i Rasterization Algorithms

= A fundamental computer graphics function
= Determine the pixels’ colors, illuminations, textures,
etc.
= Implemented by graphics hardware
= Rasterization algorithms
Lines —

= Circles .
= Triangles
= Polygons




i Rasterize Lines

= Why learn this?

= Understand the discrete nature of
computer graphics

= Write pure device independent graphics
programs (Palm graphics)

= Become a graphics system developer

i Line Drawing Algorithm (1)

Line: (3,2) -> (9,6)

/C’j

1

PNWhOOoo N

0123 456789 101112

i Line Drawing Algorithm (2)

= Slope-intercept line equation
s Y=mx+b

= Given two end points (x0,y0), (x1, y1),
how to compute m and b?

(x1,y1)
m = (y1-y0) / (x1 — x0)
P = dy/dx

(x0,y0) T
‘ b=yl-m*xl

i Line Drawing Algorithm (3)

Given the line equation y = mx + b, and end points (x0,y0)

(x1, y1)

Walk through the line: starting at (x0,y0)

If we choose the next point in the line as X = x0 + Ax
Y=2

Y= y0+AXx*m
= y0 + Ax * (dy/dx)

(x0,y0)




i Line Drawing Algorithm (4)

(x1,y1)

v

Bl

'

Al

(x0, y0)

X=x0 Y=y0
Illuminate pixel (x, int(Y))

X=x0+1 Y=y0+1*m
Hluminate pixel (x, int(Y))
X=X+1 Y=Y+1*m

Illuminate pixel (x, int(Y))

Until X == x1

i Line Drawing Algorithm (5)

= How about a line like this?

L Can we still increment X by 1
i at each Step?

We don’t get enough samples

* The answer is No. Why?

How to fix it ?

‘ Increment Y

i Line Drawing Algorihtm (6)

(x1,y1)

:
;
N

(x0,y0)

X = X0 Y =y0
Hluminate pixel (x, int(Y))

Y=y0+1 X=x0+1*1/m
Iluminate pixel (x, int(Y))
Y=Y+1 X=X+1/m

Illuminate pixel (x, int(Y))

Until Y ==y1

i Line Drawing Algorithm (7)

= The above is the simplest line drawing
algorithm

= Not very efficient

= Optimized algorithms such integer DDA
and Bresenhan algorithm (section 8.10)
are typically used

= Not the focus of this course




