
Something noteworthy

Very very noteworthy …
OpenGL postmultiply each new transformation matrix
M = M x Mnew

Example: perform translation, then rotation
0) M = Identity
1) translation T(tx,ty,0) -> M = M x T(tx,ty,0)
2) rotation R(θ) -> M = M x R(θ)
3) Now, transform a point P -> P’ = M x P

= T(tx, ty, 0) x R(θ) x P Wrong!!!

Example Revisit
We want rotation and then translation
Generate wrong results if you do:

glRotated(60,0,0,1);

glTranslated(5,0,0);

glBegin()

glTranslated(5,0,0);
glRotate(60,0,0,1);
glBegin()
…

You need to specify the transformation
in the opposite order!!

How Strange …

OpenGL has its reason …
It wants you to think of transformation in a
different way
Instead of thinking of transform the object in
a fixed global coordinate system, you should
think of transforming an object as moving
(transforming) its local coordinate system

When use OpenGL, we need to think
object transformations as moving
(transforming) its local coordinate
frame
All the transformations are performed
relative to the current coordinate frame
origin and axes

OpenGL Transformation

Translate Coordinate Frame

Translate (3,3)?

Translate Coordinate Frame (2)

Translate (3,3)?

Rotate Coordinate Frame

Rotate 30 degree?

30 degree

Scale Coordinate Frame

Scale (0.5,0.5)?

Compose Transformations

(7,9)

45
o

Answer:

1. Translate(7,9)
2. Rotate 45
3. Scale (2,2)

Transformations?

Another example

(5,5)

60 o

How do you transform from C1 to C2?

Translate (5,5) and then Rotate (60)

OR

Rotate (60) and then Translate (5,5) ???

Answer: Translate(5,5) and then
Rotate (60)

C1

C2

Another example (cont’d)

60 o

If you Rotate(60) and then Translate(5,5) …

60 o

55

C1 C2

You will be translated (5,5)
relative to C2!!

Transform Objects

What does coordinate frame transformation
have anything to do with object
transformation?

You can view transformation as to tie the
object to a local coordinate frame and
move that coordinate frame

Example

Old way: Transformation as moving
the object relative to the origin of a
global world coordinate frame

(5,0)

60
o

1) Rotate ()
2) Translate (5,0)

60
o

Example (cont’d)

If you think of transformations as
moving the local coordinate frame

1) Translate (5,0)
2) Rotate () 60

o

(5,0)

60
o

Exact the opposite order compared to the
previous slide!!

So …
If you think of transformations as moving
the object relative to the origin of a
global world coordinate frame

(5,0)

60
o

1) Rotate () - MR

2) Translate (5,0) - MT

P’ = MT x MR x P is the
Correct multiplication

60
o

However, OpenGL will do MR x MT x P if you call
glRotate() first, and then glTranslate() because of
postmultiplication

So … (cont’d)

If you think of transformations as
moving the coordinate frame

(5,0)

60
o

1) Translate (5,0) - MT

2) Rotate () - MR60
o

So if you think in terms of moving coordinate frames, you will want
to perform Translate first, and then Rotate (I.e., call glTranslate() first
and then glRotate())
OpenGL will do MT x MR x P -> The correct multiplication order!!!

Put it all together

When you use OpenGL …
Think of transformation as moving coordinate
frames
Call OpenGL transformation functions in that
order
OpenGL will actually perform the
transformations in the reverse order
Everything will be just right!!!

Change Coordinate System (1)

What constitutes a coordinate system?
Origin O
Basis vector i, j

Any point P (x,y) in the coordinate system can be
represented:

P = O + x * i + y * ji

j

O

Change Coordinate System (2)

Transform a coordinate system

We can denote the transformation of
coordinate systems as

C’ = M x C

O

I’
J’

C’

I

J

O’

C
O’ = M x O
I’ = M x I
J’ = M x J

(Note that when we transform a vector (a,b), we use (a,b,0)
to multiply with the 3x3 matrix M (as opposed to (a,b,1) like we do
for points

Change Coordinate System (3)

Assuming P (c, d) in C’, and C’ is obtained by
transforming C using M, i.e.,

C’ = M x C

O
I

J C

O’

I’J’
C’

P = (c,d)

cd

M

Then the coordinates for
P in C is

P’ = M x P

(a,b,1) = M x (c,d,1)

a

b

Successive Coordinate Changes

C1

M1

C2

C1 C2 C3
M1 M2

Given P (a3,b3) in C3
What is P’s coordinates in
C1?

M2

(a3,b3)
C3

a3b3

1) Get P’s coordinates in C2
P_c2 = M2 x P

2) Get P_c2’s coordinates in C1
P_c1 = M1 x P_c2

P_c1 = M1 x M2 x P the answer!!

Change Coordinate System (4)
What does it have anything to do with object
transformation?
We can view transformation as moving the
coordinate system (reference frame) and tie the
object with that frame

O’ I

J C

(c,d)

a

b
a c
b = M x d
1 1

What is (a,b)? The coordinates
Of the point P (c,d) in C after the
coordinate system change

i.e, the new coordinates after
transforming (c,d)

O’

I’J’
C’

(a,b)

cd

Look at transformation again…

C1 M2

(c,d)
C3

a3b3

(c,d)

M1

C2

(c,d)

Think transformation of
point P (c,d) as a
sequence of coordinate
frame change

P (c,d) is always tied
to the (local) coordinate
frame

P’s final position after the
Transformations?
-> (c,d)’s coordinates in C1

Look at transformation again (2)

C1 M2

(c,d)
C3

cd

(c,d)

M1

C2

(c,d)

Tell OpenGL to transform
Using:

M1 (move C1 to C2)
M2 (move C2 to C3)

P’s final coordinates =
P’s coordinates in C1 =
M1 x M2 x P

This is what we want, and
exactly what OpenGL does!!

i.e. Apply the last transformation
(M2) to the point first

In other words: If you think of
transformations as changing coordinate
frames, the order that you specify the
transformations (for the frames) will be
exactly opposite to the order that the
transformations are actually applied
(i.e. matrix- multiplied) to the object

Look at transformation again (3)

Put it all together

Coordinate system transformation
Transform an object from coordinate system C1 with
the origin at (x1,y1) or (x1,y1,z1) in 3D, to coordinate
system C2 with the origin (x2,y2) or (x2,y2,z1) in 3D

(x2,y2)

(x1,y1)

1. Find the transformation sequence to move C2
to C1 (so C2 will align with C1)
• Move the origin of C2 to coincide with the

origin of C1
• Rotate the basis vectors of C2 so that they

coincide wih C1’s.
• Scale the unit if necessary

2. Apply the above transformation sequence to the
object in the opposite order

c1c2

