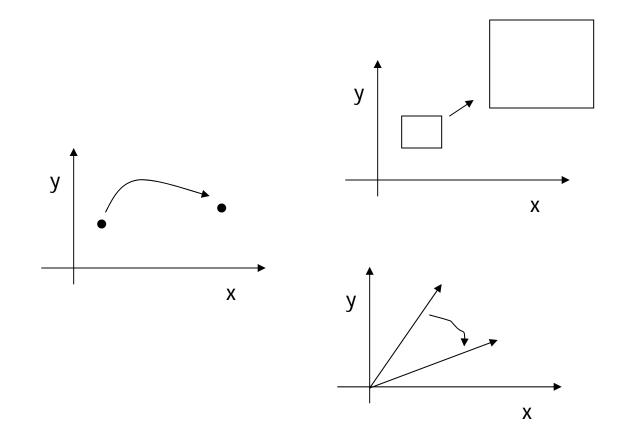
2D Transformations



2D Transformation

- Given a 2D object, transformation is to change the object's
 - Position (translation)
 - Size (scaling)
 - Orientation (rotation)
 - Shapes (shear)
- Apply a sequence of matrix multiplication to the object vertices

Point representation

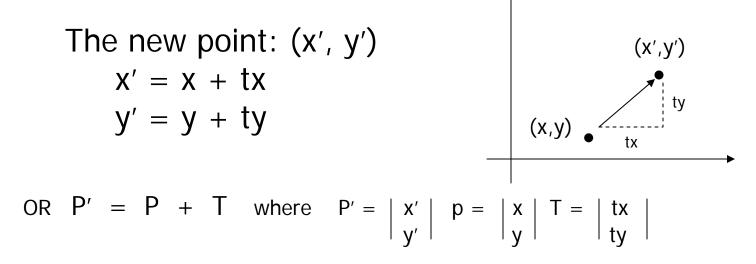
We can use a column vector (a 2x1 matrix) to represent a 2D point | x |

V

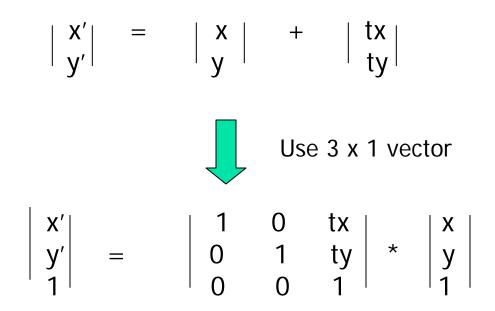
 A general form of *linear* transformation can be written as:

Translation

- Re-position a point along a straight line
- Given a point (x,y), and the translation distance (tx,ty)



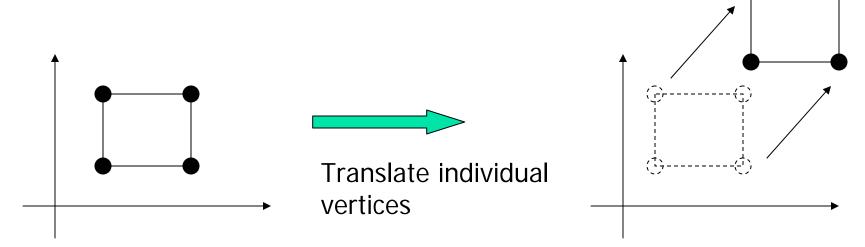
3x3 2D Translation Matrix



Note that now it becomes a matrix-vector multiplication

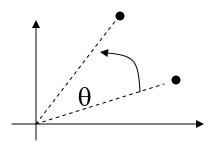
Translation

How to translate an object with multiple vertices?

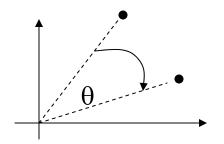


2D Rotation

Default rotation center: Origin (0,0)



 $\theta > 0$: Rotate counter clockwise

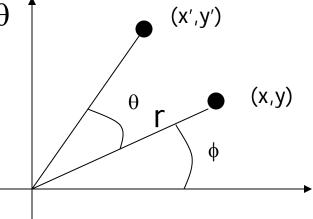


 $\theta < 0$: Rotate clockwise

(x,y) -> Rotate *about the origin* by θ

→ (x′, y′)

How to compute (x', y')?



x = r cos (ϕ) y = r sin (ϕ) x' = r cos (ϕ + θ) y = r sin (ϕ + θ)

_

$$x = r \cos (\phi) \quad y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta) \quad y = r \sin (\phi + \theta)$$

$$x' = r \cos (\phi + \theta)$$

$$= r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$= x \cos(\theta) - y \sin(\theta)$$

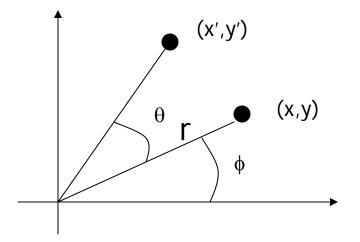
$$y' = r \sin (\phi + \theta)$$

$$= r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$

$$= y \cos(\theta) + x \sin(\theta)$$

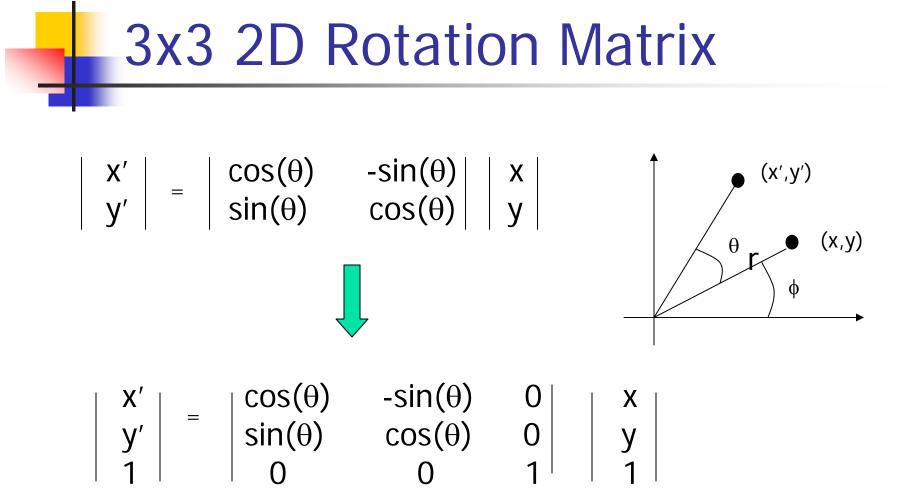
 $x' = x \cos(\theta) - y \sin(\theta)$ $y' = y \cos(\theta) + x \sin(\theta)$

Matrix form?

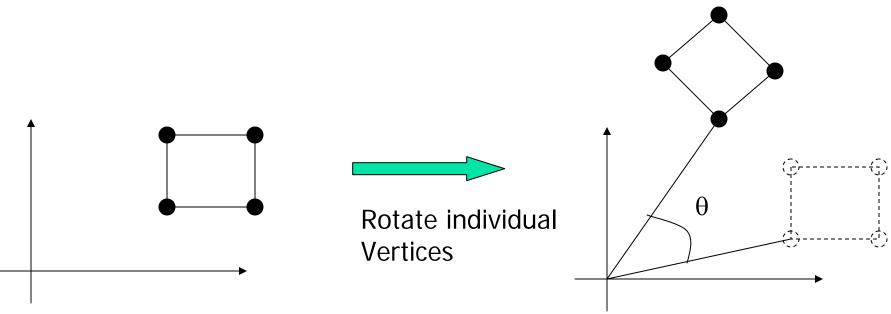


$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$$

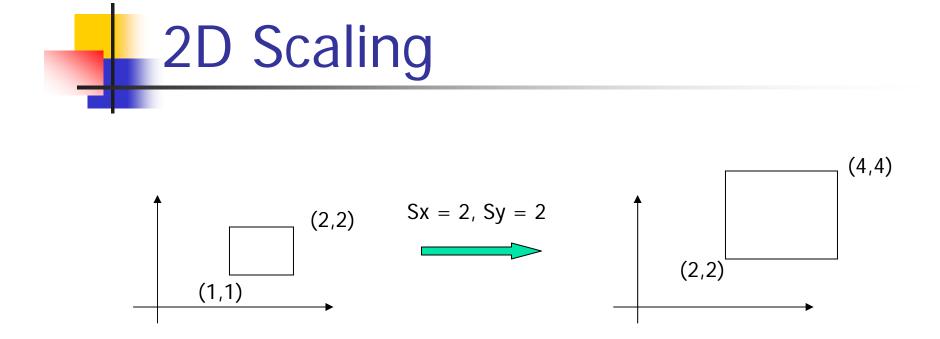
3 x 3?



How to rotate an object with multiple vertices?



Scale: Alter the size of an object by a scaling factor (Sx, Sy), i.e.



- Not only the object size is changed, it also moved<u>!!</u>
- Usually this is an undesirable effect
- We will discuss later (soon) how to fix it

3x3 2D Scaling Matrix

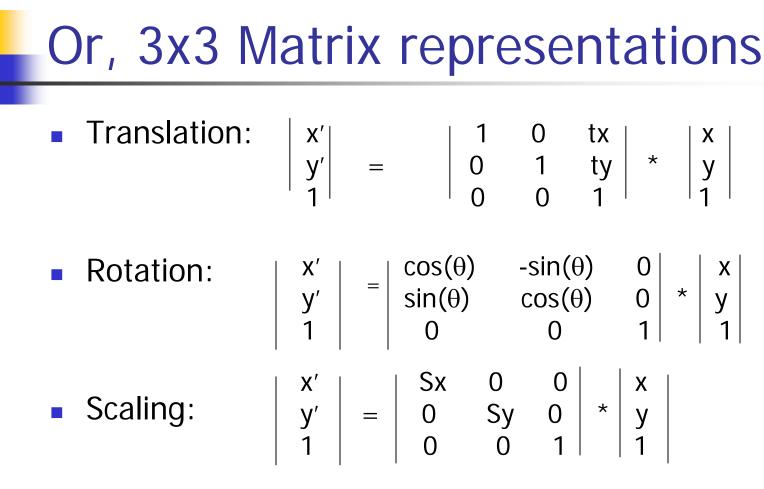
$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} Sx & 0 \\ 0 & Sy \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$$
$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

Put it all together

• Translation:
$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} x \\ y \end{vmatrix} + \begin{vmatrix} tx \\ ty \end{vmatrix}$$

• Rotation:
$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{vmatrix} \frac{x}{y}$$

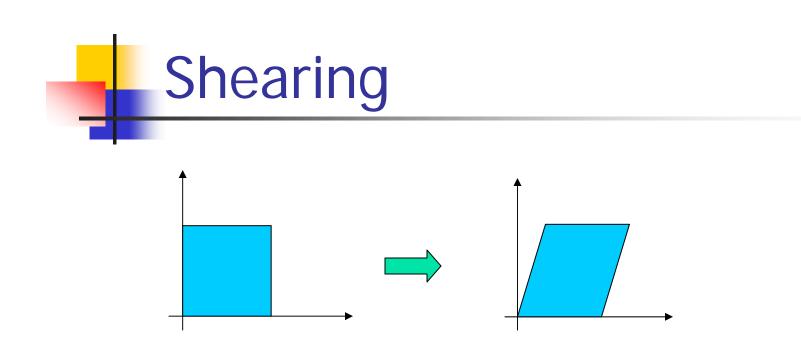
• Scaling:
$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} Sx & 0 \\ 0 & Sy \end{vmatrix} * \begin{vmatrix} x \\ y \end{vmatrix}$$



Why use 3x3 matrices?

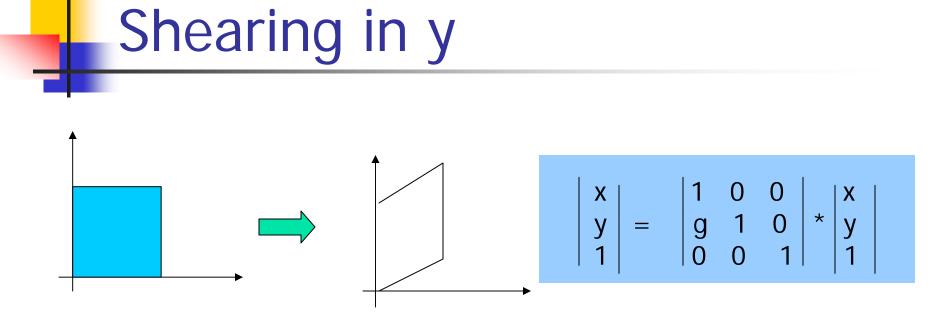
Why use 3x3 matrices?

- So that we can perform all transformations using matrix/vector multiplications
- This allows us to *pre-multiply* all the matrices together
- The point (x,y) needs to be represented as (x,y,1) -> this is called Homogeneous coordinates!



- Y coordinates are unaffected, but x cordinates are translated linearly with y
- That is:

$$\begin{vmatrix} x \\ y \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$



Interesting Facts:

- A 2D rotation is three shears
- Shearing will not change the area of the object
- Any 2D shearing can be done by a rotation, followed by a scaling, and followed by a rotation

Rotation Revisit The standard rotation matrix is used to rotate about the origin (0,0)

 $-\sin(\theta)$

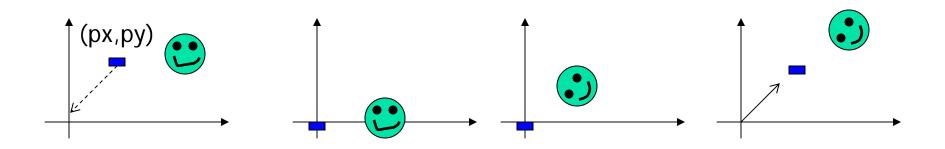
0

 $\cos(\theta)$

 $sin(\theta)$ $\cos(\theta)$ 0 0 0 1 What if I want to rotate about an arbitrary center?

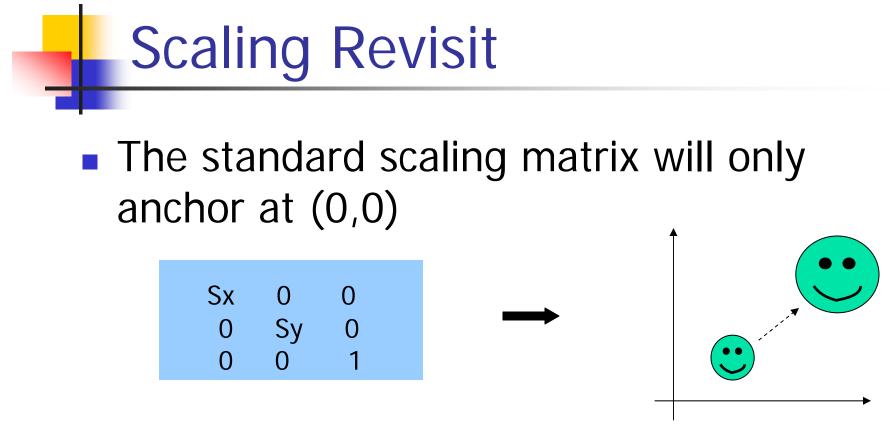
Arbitrary Rotation Center

- To rotate about an arbitrary point P (px,py) by θ:
 - Translate the object so that P will coincide with the origin: T(-px, -py)
 - Rotate the object: R(θ)
 - Translate the object back: T(px,py)



Arbitrary Rotation Center

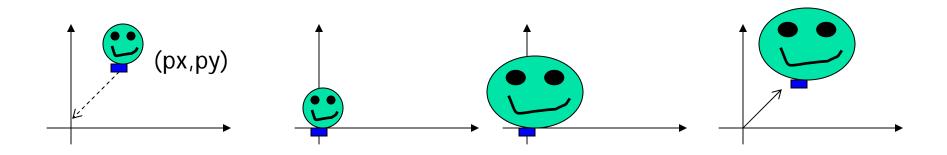
- Translate the object so that P will coincide with the origin: T(-px, -py)
- Rotate the object: R(θ)
- Translate the object back: T(px,py)
- Put in matrix form: T(px,py) R(θ) T(-px, -py) * P



What if I want to scale about an arbitrary pivot point?

Arbitrary Scaling Pivot

- To scale about an arbitrary pivot point P (px,py):
 - Translate the object so that P will coincide with the origin: T(-px, -py)
 - Rotate the object: S(sx, sy)
 - Translate the object back: T(px,py)



Affine Transformation

- Translation, Scaling, Rotation, Shearing are all affine transformation
- Affine transformation transformed point P' (x',y') is a linear combination of the original point P (x,y), i.e.

Χ′		m11	m12	m13	Х
y'	=	m21	m22	m23	у
1		0	0	1	1

 Any 2D affine transformation can be decomposed into a rotation, followed by a scaling, followed by a shearing, and followed by a translation.
 Affine matrix = translation x shearing x scaling x rotation

Composing Transformation

- Composing Transformation the process of applying several transformation in succession to form one overall transformation
- If we apply transform a point P using M1 matrix first, and then transform using M2, and then M3, then we have:

Composing Transformation

- Matrix multiplication is associative
 M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)
- Transformation products may not be commutative

 $A \times B != B \times A$

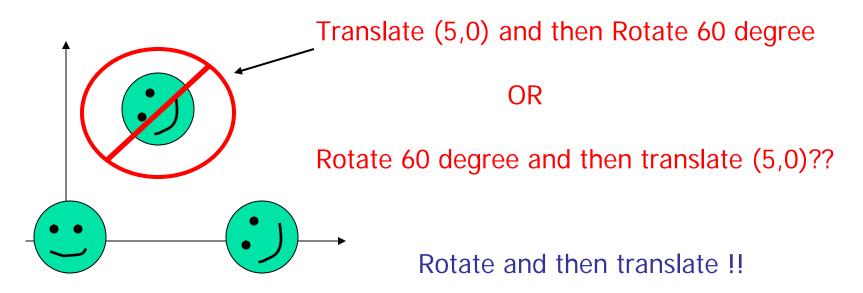
Some cases where A x B = B x A

A	В		
translation	translation		
scaling	scaling		
rotation	rotation		
uniform scaling	rotation		

(SX = SY)

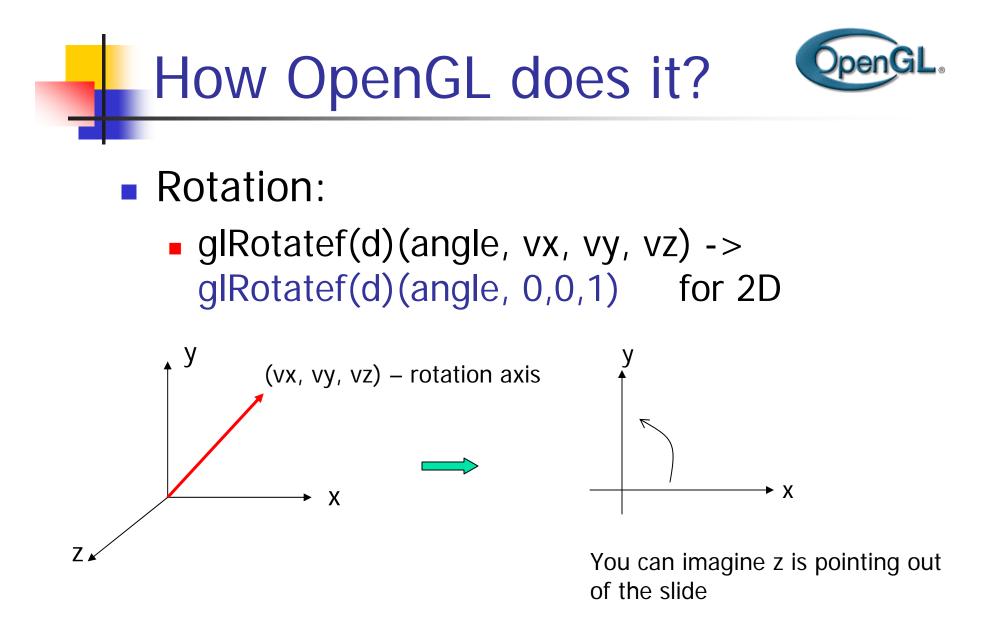
Transformation order matters!

• Example: rotation and translation are not commutative



How OpenGL does it?

- OpenGL's transformation functions are meant to be used in 3D
- No problem for 2D though just ignore the z dimension
- Translation:
 - glTranslatef(d)(tx, ty, tz) -> glTranslatef(d)(tx,ty,0) for 2D



OpenGL Transformation Composition

- A global modeling transformation matrix (GL_MODELVIEW, called it M here) glMatrixMode(GL_MODELVIEW)
- The user is responsible to reset it if necessary glLoadIdentity()

$$-> M = 100$$

 010
 001

OpenGL Transformation Composition

- Matrices for performing user-specified transformations are multiplied to the model view global matrix
- For example,

glTranslated(1,10); $M = M \times \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

 All the vertices P defined within glBegin() will first go through the transformation (modeling transformation)

$$P' = M \times P$$

. . .

Transformation Pipeline Object Object Modeling World Coordinates/ Local Coordinates transformation