Graphics Hardware

- Display (CRT, LCD,...)
- Graphics accelerator
 - Scan controller
 - Video Memory (frame buffer)
 - Display/Graphics Processor
- CPU/Memory/Disk ...

Display Technologies

- Front projection
- Back projection
- Direct view
- Backlit

Display Technologies

- CRT
- LED
- LCD
- Plasma Panels
- DLP
- OLED
- Etc.

Trade-offs

- Cost, Weight, Size
- Power consumption
- Spatial & Color resolution
- Peak brightness, Black, contrast
- Etc.

Cathode Ray Tube (CRT)

- 3. Control grid (control intensity)
- 4. Focus 5. Deflector 6. Phosphor coating

Operation of a delta-delta, shadow-mask CRT. Three electron guns, aligned with the triangular color-dot patterns on the screen, are directed to each dot triangle by a shadow mask.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Color CRT

3 electron guns, 3 color phosphor dots at each pixel

Color = (red, green, blue)

Red = 0 to 100% Green = 0 to 100% Blue = 0 to 100% Black = (0,0,0)White = (1,1,1)Red = (1,0,0)Green = (0,1,0)Blue = (0,0,1)

. . .

LCD: backlit

Plasma Panels: emit light; soon extinct?

DLP: http://www.dlp.com/includes/video_demo.aspx

For digital projection

Digital Micromirror Device

Trade-offs

Rear projection Front projection Direct view Backlit Peak brightness Black level Contrast Screen brightness Motion artifaces Aging Maximum resolution Thickness Weight Power consumption

http://www.displaymate.com/ShootOut_Comparison.htm

Random Scan Order

 Old way: No pixels - The electron gun draws straight lines from location to location on the screen (vector graphics)

a.k.a. calligraphic display, Random scan device, vector drawing display

Use either **display list** or **storage tube** technology

Vector graphics

<u>Display list</u> Move (100,200) Draw(200,200) Draw(200,100) Draw(100,100)

Raster Display graphics

Digital Display

- Based on (analog) raster-scan TV technology
- The screen (and a picture) consists of discrete pixels

How CRT draws a picture

We have only one electron gun but many pixels in a picture need to be lit simultaneously...

Refresh of CRT

- Refresh the electron gun needs to come back to hit the pixel again before it fades out
- An appropriate fresh rate depends on the property of phosphor coating
 Phosphor persistence: the time it takes for the emitted light to decay to 1/10 of the original intensity
- Typical refresh rate: 60 80 times per second (Hz) (What will happen if refreshing is too slow or too fast?)

Frame Buffer

- Frame buffer: the memory to hold the pixel intensity values
- Properties of a frame buffer that affect the graphics performance:
 - Size: screen resolution
 - Depth: color level
 - 1 bit/pixel: black and white
 - 8 bits/pixel: 256 levels of gray
 - 24 bits/pixel: 16 million colors
 - Speed: refresh speed

Raster Scan Order

What we do now: the electron gun will scan through the pixels from left to right, top to bottom (scanline by scanline)

Raster Scan Order

The electron gun will scan through the pixels from left to right, top to bottom (scanline by scanline)

Raster Scan Order

 The electron gun will scan through the pixels from left to right, top to bottom (scanline by scanline)

Progressive vs. Interlace

- Progressive: Scan every scan line
- Interlace: Scan only every other scan line (even -> odd -> even -> odd ...)
 - so the refresh rate becomes twice as fast

Standards

- NTSC: Interlaced, 525 line, 59.94Hz, 4:3
- DTV: Digital version of NTSC, 480i, 4:3
- HDTV: e.g. 720p, 60Hz, 16:9
- Blu-ray: 1080p
- Other standards?

Raster Scan Control

 Scan Controller (video adaptor) and frame buffer

Frame buffer

Color is expensive ...

- At least used to be
- The more color you want, the more bits you will need for each pixel
- Exercise: 1024 x 1280 screen with

24 bits per pixel, how many bytes in the frame buffer?

1024 x 1280 x 24 / 8 = 4M Byte

@30 fps = 120 MB/sec

Color Lookup Table

- Say I am a poor man ... I only have 3 bits per pixel
- But I insist on having high quality pictures ...
- Use Color Look Up Table (LUT)

Problem?

Video memory: On-board frame buffer: much faster to access

Graphics Accelerator

Graphics Accelerator

NVIDIA GPUs

Ouadro FX 5600 Ouadro FX 4600 1.5GB GDDR3 Memory Size 768MB GDDR3 Memory Interface 384-bit 384-bit Memory 76.8 GB/sec. 67.2 GB/sec. Bandwidth Max Power 171W 134W Consumption Number of Slots 2 2 Display Connectors DVI-I DVI-I Stereo DVI-I DVI-I Stereo **Dual-Link DVI** 2 2 \$2,999.00 Price \$1,999.00

AMD GPUs

Desktop vs Mobility Radeon Graphics

	Desktop Radeon HD 6990	Desktop Radeon HD 6870	Radeon HD 6990M
Transistors	5.28 billion	1.7 billion	1.7 billion
Engine Clock	830 MHz	900 MHz	715 MHz
Shader (ALUs)	3072	1120	1120
Texture Units	192	56	56
ROP Units	64	32	32
Compute Performance	5.1 TFLOPS	2.01 TFLOPS	1.60 TFLOPS
DRAM Type	GDDR5-5000	GDDR5-4200	GDDR5-3600
DRAM Interface	256-bits per GPU	256-bits	256-bits
Memory Bandwidth	160 GB/s per GPU	134 GB/s	115.2 GB/s
TDP	375 W	151 W	100 W

Evolution of Performance

The Evolution of GPUs

ftp://download.nvidia.com/developer/presentations/2004/Perfect_Kitchen_Art/English_Evolution_of_GPUs.pdf

THE GPU COMPUTING ERA

http://sbel.wisc.edu/Courses/ME964/2011/Literature/onGPUcomputingDally2010.pdf

The Graphics Pipeline

Graphics Bus Interface

PCI based technology

Graphics Bus Interface (2)

- PCI Bus becomes the bottleneck!
 - Many devices are using it
 - There is a lot of stuff needs to be transmitted from main memory to graphics memory (geometry, textures, etc)
 - Example: 2M triangle, 90 Bytes each 180MB > 132 MB (PCI bandwidth)

A dedicated bus that allows direct access of main memory

AGP

- AGP 1x is four times as fast compared to PCI! (now we have AGP 8x)
- No more local bus congestion!
- More geometry can be processed!
- Direct execution of many graphics operations from main memory

Textbook Chapter 1, 2

Lab 1: Compile and run the sample OpenGL program posted on the class web site