
Illumination and Shading

Illumination (Lighting)

Model the interaction of light with surface
points to determine their final color andpoints to determine their final color and
brightness
OpenGL computes illumination at vertices p p

illuminationillumination

Shading

Apply the lighting model at a set of points
across the entire surfaceacross the entire surface

Shading

Illumination Model

The governing principles for computing the
illumination
A illumination model usually considers:

Light attributes (light intensity, color, position,
d h)direction, shape)
Object surface attributes (color, reflectivity,
transparency, etc)p y,)
Interaction among lights and objects (object
orientation)
Interaction between objects and eye (viewing dir)Interaction between objects and eye (viewing dir.)

Illumination Calculation

Local illumination: only consider the light, the
b iti d th bj t t i l tiobserver position, and the object material properties

θ

Example: OpenGL

Illumination Models

Global illumination: take into account the
i t ti f li ht f ll th f i thinteraction of light from all the surfaces in the scene

object 4

object 2object 3

object 1

Example: Ray Tracing (CIS681)

Basic Light Sources
sun

Li h i i b
Point light Directional light

Light intensity can be
independent or
dependent of the
distance between objectdistance between object
and the light source

Spot light

Simple local illumination

The model used by OpenGL – consider three
types of light contribution to compute thetypes of light contribution to compute the
final illumination of an object

Ambient b
Diffuse
Specular

Final illumination of a point (vertex) =
ambient + diffuse + specular

Ambient light contribution
Ambient light (background light): the light that is scattered by
the environment
A very simple approximation of global illumination

object 4

b

object 2object 3

object 4

Independent of the light position,object orientation, observer’s
position or orientation – ambient light has no direction
(Radiosity is the calculation of ambient light)

object 1

(Radiosity is the calculation of ambient light)

Ambient lighting example

Ambient light calculation

Each light source has an ambient light contribution
(I)(Ia)
Different objects can reflect different amounts of
ambient (different ambient reflection coefficient Ka,
0 <= Ka <= 1)
So the amount of ambient light that can be seen
from an object is:from an object is:

Ambient = I * KAmbient Ia Ka

Diffuse light contribution

Diffuse light: The illumination that a surface receives
from a light source and reflects equally in all directiong q y

It does not matter where
the eye isy

Diffuse lighting example

Diffuse light calculation

Need to decide how much light the object point
receive from the light source – based on Lambert’s
Law

Receive more light Receive less lightReceive more light Receive less light

Diffuse light calculation (2)

Lambert’s law: the radiant energy D that a small
surface patch receives from a light source is:

D = I * cos (θ)
I: light intensity

l b h li h d h f lθ: angle between the light vector and the surface normal

light vector (vector from object to light)

N : surface normal θ

Diffuse light calculation (3)

Like the ambient light case, different objects can
reflect different amount of diffuse light (different g (
diffuse reflection coefficient Kd, 0 <= Kd <= 1))

So, the amount of diffuse light that can be seen is:

Diffuse K * I * cos (θ)Diffuse = Kd * I * cos (θ)

θ θ

N
L

cos(θ) = N Lθ θ cos(θ) = N.L

Specular light contribution

The bright spot on the object
Th lt f t t l fl ti fThe result of total reflection of
the incident light in a concentrate
regionregion

See nothing!g

Specular light example

Specular light calculation

How much reflection you can see depends on
where you arewhere you are

The only position the eye can see specular from P
if the object has an ideal reflection surface

But for a non-perfect surface you will
still see specular highlight when you movep g g y
a little bit away from the idea reflection
direction

Wh φ i ll l

θ ?

p

φ

When φ is small, you see more specular
highlight

p

Specular light calculation (2)
Phong lighting model

specular = K * I * cosn(φ)specular = Ks * I * cosn(φ)

Ks: specular reflection coefficient
N: surface normal at PN: surface normal at P
I: light intensity
φ: angle between V and R R

NL

cos(φ): the larger is n, the smaller
is the cos value
cos(θ) = R.V

θ θ

p

φ Vn

Specular light calculation (3)

The effect of ‘n’ in the phong model

n = 10 n = 90

n = 30 n = 270

Put it all together

Illumination from a light:
Illum = ambient + diffuse + specular nIllum ambient + diffuse + specular

= Ka * I + Kd * I * (N.L) + Ks * I * (R.V)n

If there are N lights

n

or

Total illumination for a point P = Σ (Illum)
Some more terms to be added (in OpenGL):

(N.H)

Some more terms to be added (in OpenGL):
Self emission
Global ambient
Li ht di t tt ti d t li ht ff tLight distance attenuation and spot light effect

Lighting in OpenGL

Adopt Phong lighting model (specular) plus diffuse
and ambient lightsg

Lighting is computed at vertices
Interpolate across surface (Gouraud/smooth shading) OR
Use a constant illumination (get it from one of the vertices)(g)

Setting up OpenGL Lighting:
Light PropertiesLight Properties
Enable/Disable lighting
Surface material properties
Provide correct surface normalsProvide correct surface normals
Light model properties

Light Properties
Properties:

Colors / Position and type / attenuation/ yp /

glLightfv(light, property, value)

2 3

(1) constant: specify which light you want to set the property
example: GL LIGHT0 GL LIGHT1 GL LIGHT2 you can

1 2 3

example: GL_LIGHT0, GL_LIGHT1, GL_LIGHT2 … you can
create multiple lights (OpenGL allows at least 8 lights)

(2) constant: specify which light property you want to set the value
example: GL AMBIENT GL DIFFUSE GL SPECULAR GL POSITIONexample: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION

(check the red book for more)
(3) The value you want to set to the property

Property Example

Define colors and position a light

GLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0};
GLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};

colors

GLfloat light_position[] = {0.0, 0.0, 1.0, 1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL LIGHT0 GL DIFFUSE light diffuse);

Position

What if I set the
Position toglLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);

glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Position to
(0,0,1,0)?

Types of lights

OpenGL supports two types of lights
L l li ht (i t li ht)Local light (point light)
Infinite light (directional light)

Determined by the light positions you provideDetermined by the light positions you provide
w = 0: infinite light source (faster)
w != 0: point light – position = (x/w y/w z/w)w != 0: point light position = (x/w, y/w, z/w)

GLfloat light_position[] = {x,y,z,w};

lLi htf (GL LIGHT0 GL POSITION li ht iti)glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Turning on the lights

Turn on the power (for all the lights)
glEnable(GL_LIGHTING);

lDi bl (GL LIGHTING)glDisable(GL_LIGHTING);

Flip each light’s switchFlip each light s switch
glEnable(GL_LIGHTn) (n = 0,1,2,…)

Controlling light position

Modelview matrix affects a light’s position
You can specify the position relative to:You can specify the position relative to:

Eye space: the highlight remains in the same
position relative to the eye

call glLightfv() before gluLookAt()call glLightfv() before gluLookAt()
World space: a light’s position/direction appears
fixed in the scene

Call glLightfv() after gluLookAt()

See Nat Robin’s Demo
http://www.xmission.com/~nate/tutors.html

Material Properties

The color and surface properties of a material (dull,
shiny etc)shiny, etc)
How much the surface reflects the incident lights
(ambient/diffuse/specular reflecetion coefficients)(/ / p)

glMaterialfv(face, property, value)

Face: material property for which face (e g GL FRONT GL BACKFace: material property for which face (e.g. GL_FRONT, GL_BACK,
GL_FRONT_AND_BACK)

Property: what material property you want to set (e.g. GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_SHININESS, GL_EMISSION, etc)

Value: the value you can to assign to the property

Material Example

Define ambient/diffuse/specular reflection
and shininessand shininess

GLfloat mat amb diff[] = {1 0 0 5 0 8 1 0};GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0};

GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shininess[] = {5.0}; (range: dull 0 – very shiny128)

refl. coefficient

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_speacular);
glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

Global light properties

glLightModelfv(property, value)
Enable two sided lightingEnable two sided lighting

property = GL_LIGHT_MODEL_TWO_SIDE
value = GL_TRUE (GL_FALSE if you don’t want two sided
lighting)lighting)

Global ambient color
Property = GL_LIGHT_MODEL_AMBIENTp y
Value = (red, green, blue, 1.0);

Check the red book for others

Surface Normals

Correct normals are essential for correct lighting
Associate a normal to each vertexAssociate a normal to each vertex

glBegin(…)
glNormal3f(x,y,z)
glVertex3f(x,y,z)
…
glEnd()

The normals you provide need to have a unit length
You can use glEnable(GL_NORMALIZE) to have OpenGL
normalize all the normalsnormalize all the normals

Lighting revisit

Where is lighting performed in the
graphics pipeline?graphics pipeline?

d l d

v1, m1

modeling and
viewing

v2, m2 v3, m3

per vertex
lighting projection

clippinginterpolate
vertex colors

viewport
mapping

Rasterization
texturing
shading

Display

Polygon shading model

Flat shading – compute lighting once and
assign the color to the whole polygonassign the color to the whole polygon

Flat shading

Only use one vertex (usually the first one)
normal and material property to compute thenormal and material property to compute the
color for the polygon
Benefit: fast to computep
It is used when:

The polygon is small enough
The light source is far away (why?)
The eye is very far away (why?)

OpenGL command: glShadeModel(GL FLAT)OpenGL command: glShadeModel(GL_FLAT)

Mach Band Effect

Flat shading suffers from “mach band effect”
Mach band effect – human eyes accentuate
the discontinuity at the boundary

perceived intensity

Side view of a polygonal surface

Smooth shading

Reduce the mach band effect – remove
value discontinuity
Compute lighting for more points on each p g g p
face

Flat shading smooth shading

Smooth shading
Two popular methods:

Gouraud shading (used by OpenGL)Gouraud shading (used by OpenGL)
Phong shading (better specular highlight,
not supported by OpenGL)pp y p)

Gouraud Shading (1)

The smooth shading algorithm used in OpenGL
glShadeModel(GL SMOOTH)glShadeModel(GL_SMOOTH)

Lighting is calculated for each of the polygon vertices
Colors are interpolated for interior pixelsp p

Gouraud Shading (2)

Per-vertex lighting calculation
Normal is needed for each vertexNormal is needed for each vertex
Per-vertex normal can be computed by
averaging the adjust face normalsaveraging the adjust face normals

nn1 n2

n3 n4
n = (n1 + n2 + n3 + n4) / 4.0

Gouraud Shading (3)

Compute vertex illumination (color) before the
projection transformationprojection transformation
Shade interior pixels: color interpolation (normals
are not needed)

C1

for all scanlines

C2 C3

Ca = lerp(C1, C2) Cb = lerp(C1, C3)

C2 C3

Lerp(Ca, Cb)
* lerp: linear interpolation

Gouraud Shading (4)

Linear interpolation

a b
x = a / (a+b) * v2 + b/(a+b) * v1

Interpolate triangle color: use y distance to
interpolate the two end points in the scanline, and

v1 v2x

interpolate the two end points in the scanline, and
use x distance to interpolate interior
pixel colors

Gouraud Shading Problem

Lighting in the polygon interior can be
inaccurateinaccurate

Gouraud Shading Problem

Lighting in the polygon interior can be
inaccurateinaccurate

Phong Shading

Instead of color interpolation, we calculate
lighting for each pixel inside the polygon (perlighting for each pixel inside the polygon (per
pixel lighting)
We need to have normals for all the pixelsWe need to have normals for all the pixels –
not provided by the user
Phong shading algorithm interpolates thePhong shading algorithm interpolates the
normals and compute lighting during
rasterization (need to map the normal back to (p
world or eye space though - WHY?)

Phong Shading (2)

Normal interpolation
n1

nb = lerp(n1, n3)na = lerp(n1, n2)

n2

n3

lerp(na, nb)

Slow – not supported by OpenGL and most of
the graphics hardware

n3

the graphics hardware

