Stencil Buffer & Decals
- Decals
 - Stencil buffer & OpenGL commands
 - Using the stencil buffer to apply polygonal decals
 - Using the stencil buffer to apply text decals

Decals
2 step process:
1. As surface to be stenciled is written into frame buffer, mark what pixels it modifies
2. Scan convert decal into frame buffer restricted to the pixels marked in step 1

Decals
2 step process:
1. As surface to be stenciled is written into frame buffer, mark what pixels it modifies
2. Scan convert decal into frame buffer restricted to the pixels marked in step 1

Stencil Buffer
- Same spatial resolution as color and depth buffers
- Usually (and at least) 8-bits, but can vary
- Used to hold values related to elements being written into frame buffer
OpenGL Commands

- **glStencilFunc()** - sets function to test stencil bits with
- **glStencilMask(), glStencilMaskSeparate()** - specifies which bits in Stencil Buffer are involved
- **glStencilOp(), glStencilOpSeparate()** - specifies operation to perform as result of stencil test and depth test

glStencilFunc()

- `glStencilFunc(GLenum func, Glint ref, GLuint mask)`
- Specifies test to perform on reference value and masked bits in stencil buffer
 - `func` - test function e.g., GL_LEQUAL, GL_ALWAYS
 - `ref` - reference value for test
 - `mask` - ANDed with ref & stencil value - selects what bits to use

glStencilMask()

- `glStencilMask(GLuint mask)`
- Enables and disables writing of individual bits in the stencil planes

glStencilMaskSeparate()

- `glStencilMaskSeparate(GLenum face, GLuint mask)`
- Face - GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
- Enables and disables writing of individual bits in the stencil planes
glStencilOp()

- `glStencilOp(GLenum sfail, GLenum dpfail, GLenum dppass)`

 Specifies what action to take as a result of stencil test and depth test: GL_KEEP, GL_ZERO, GL_REPLACE, etc.

 - `sfail` - fails stencil test
 - `dpfail` - passes stencil test, fails depth test
 - `dppass` - passes both stencil and depth test

glStencilOpSeparate()

- `glStencilOpSeparate(GLenum face, GLenum sfail, GLenum dpfail, GLenum dppass)`

 Specifies what action to take as a result of stencil test and depth test: GL_KEEP, GL_ZERO, GL_REPLACE, etc.

 - `sfail` - fails stencil test
 - `dpfail` - passes stencil test, fails depth test
 - `dppass` - passes both stencil and depth test

Applying decals

- Draw decal right on top of surface
- Draw it into buffer wherever surface was drawn (don’t draw it where surface is not visible)
- Don’t do depth testing

Step 1

- Put ‘1’ in stencil buffer wherever surface is drawn in frame buffer

  ```
  glEnable(GL_STENCIL_TEST);  // enable the stencil test
  glStencilFunc(GL ALWAYS, 1, 1);  // always place a 1 in the stencil buffer
  glStencilOp(GL KEEP, GL ZERO, GL REPLACE);
  // if stencil fails (it won’t - why?), keep stencil value
  // else if depth fails, put a zero in stencil buffer
  // else, replace value in stencil buffer with ref
  draw base polygon
  ```
Step 2

- Draw decal wherever stencil has a ‘1’

```gl
glStencilFunc(GL_EQUAL, 1, 1);  // test if 1 bit is set in stencil buffer,
glStencilMask(GL_FALSE);       // turn off stencil writing ('0' ?)
glDisable(GL_DEPTH_TEST);      // don't do depth test (so it 'passes')
draw decal polygon

// with depth test off and stencil writing off as in previous slide
set_material("whiteMatteMaterial");
<transforms to get it where you want it to go>

// if 1 bit is set,
glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, '5');
glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, '8');
glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, '1');
```