i Introduction to 3D viewing

= 3D is just like taking a photograph!

viewing
volume -I
camera ‘ .
= (&) (&)
tripod model

i Viewing Transformation

= Position and orient your camera

viewing

volume
camera E i
model

tripod

i Projection Transformation

= Control the “lens” of the camera
= Project the object from 3D world to 2D screen

viewing
volume

camera

tripod

Viewing Transformation (2)

= Important camera parameters to specify

= Camera (eye) position (Ex,Ey,Ez) in world coordinate
system

= Center of interest (coi) (cx, cy, cz)
= Orientation (which way is up?) View-up vector
(Up_x, Up_y, Up_2)

(ex, ey, ez)
world o ™ view up vector
(cx, cy, cz) (Up_x, Up_y, Up_2)

i Viewing Transformation (3)

= Transformation?
= Form a camera (eye) coordinate frame

\
n

y

. Eye coordinate frame
coi
world X
z

= Transform objects from world to eye space

i Viewing Transformation (4)

= Eye space?

1,0,0
©10, fj)

0,0,1)
y \/’ n

o (000
world X
z

= Transform to eye space can simplify many
downstream operations (such as projection) in the
pipeline

i Viewing Transformation (5)

= In OpenGL: @GL.

- gluLookAt (Ex, Ey, Ez, cx, cy, cz,
Up_x, Up_y, Up_2z)
- The view up vector is usually (0,1,0)
- Remember to set the OpenGL matrix mode to
GL_MODELVIEW first

i Viewing Transformation (6)

void display()
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

i Projection Transformation

= Important things to control
= Perspective or Orthographic
= Field of view and image aspect ratio
= Near and far clipping planes

i Perspective Projection

= Characterized by object foreshortening
- Objects appear to be larger if they are closer to
the camera
- This is what happens in the real world
= Need:
= Projection: Connecting the object HH
to the projection center projection plane

= Projection center camera
= Projection plane o

i Orthographic Projection

= No foreshortening effect — distance from
camera does not matter

= The projection center is at infinite

= Projection calculation — just drop z
coordinates

i Field of View

= Determine how much of the world is taken into the
picture

center of projection

field of view

y
z<—T <9;

= The larger is the field view, the smaller is the object
projection size

i Near and Far Clipping Planes

= Only objects between near and far planes are
drawn

Near plane Far plane

= Near plane + far plane + field of view =
Viewing Frustum

i Viewing Frustum

= 3D counterpart of 2D world clip window

Far plane

Viewing Frustum

= Objects outside the frustum are clipped

i Projection Transformation

= In OpenGL: @GL.

= Set the matrix mode to
GL_PROJECTION
= Perspective projection: use

= gluPerspective(fovy, aspect, near, far) or
= glFrustum(left, right, bottom, top, near, far)

= Orthographic:
= glOrtho(left, right, bottom, top, near, far)

i gluPerspective(fovy, aspect, near, far) i glFrustum(left, right, bottom, top, near, far)

= Or You can use this function in place of

m Aspect ratio is used to calculate the gluPerspective()

window width

y
o =0 fow
Aspect =w / h M

i glortho(left, right, bottom, top, near, far) i Projection Transformation

= For orthographic projection void display()
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJETION);
glLoadldentity();

gluPerspective(fove, aspect, near, far);
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

far

i 3D viewing under the hood

* 3D viewing under the hood

Topics of Interest:

= Viewing transformation
= Projection transformation

* Viewing Transformation

= Transform the object from world to eye
space
= Construct an eye space coordinate frame

= Construct a matrix to perform the
coordinate transformation

= Flexible Camera Control

Eye Coordinate Frame

= Known: eye position, center of interest, view-up
vector

= To find out: new origin and three basis vectors
Assumption: the direction of view is

orthogonal to the view plane (the plane
that objects will be projected onto)

center of interest (COIl)

Eye Coordinate Frame (2)

= Origin: eye position (that was easy)

= Three basis vectors: one is the normal vector (n) of
the viewing plane, the other two are the ones (u and
V) that span the viewing plane

v n is pointing away from the
world because we use right
hand coordinate system

Center of interest (COI)

N =eye - COI
o - " ln= N7 N]|

world origin

¥ Remember u,v,n should
(u,v,n should be orthogonal to each other) be all unit vectors

Eye Coordinate Frame (3)

= How about u and v?

We can get u first -

u is a vector that is perpendicular
to the plane spanned by
N and view up vector (V_up)

U=Vup xn

u=U/|U|

Eye Coordinate Frame (4)

= How about v? Knowing n and u, getting v is

easy

v is already normalized

i Eye Coordinate Frame (5)

= Put it all together

V_up

Eye space origin: (Eye.x, Eye.y, Eye.z)
Basis vectors:
(eye — COI) / | eye — COI|

(V_upx n)/|V_upxn|
nxu

i World to Eye Transformation

= Transformation matrix (M wze) »

| —
PP= Mwzex P
v u 1. Come up with the transformation
y \A sequence to move eye coordinate
P N frame to the world
.
world 2. And then apply this sequence to the

point P in a reverse order

i World to Eye Transformation

= Rotate the eye frame so that it will be “aligned” with

the world frame
= Translate (-ex, -ey, -ez)

Vo u

v\

(ex,ey,ez)
world

X

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
000 1

How to verify the rotation matrix?
Translation: 0 -ex
0 -ey
1 -ez
01

ocoocor
oor o

i World to Eye Transformation (2)

= Transformation order: apply the transformation to
the object in a reverse order - translation first, and
then rotate

_ ux uy ux O 1 0 0 -ex
Mw2e = VX vy vz 0 01 0 -ey
nx ny nz 0 00 1 -ez
00 0 1 000 1

AT |

y \Z' n

(ex,ey,ez)
worl
X

i World to Eye Transformation (3)

= Head tilt: Rotate your head by &
= Just rotate the object about the eye space z axis - &

ux uy ux O 1 0 0 -ex

s Mw2e = cos(-8) -sin(-8) 0 0O
sin(-8) cos(-8) 0 O vx vy vz 0 01 0 -ey
0 0 10 nx ny nz 0 00 1 -ez
0 0 01 00 0 1 000 1

v

u
y \% n Why -5 2

When you rotate your head by 8, it is like
X rotate the object by -5

world

i Projection Transformation

= Projection — map the object from 3D space
to 2D screen

Parallel: glOrtho()

Perspective: gluPerspective()

i Parallel Projection

= After transforming the object to the eye space,
parallel projection is relative easy — we could just
drop the Z
Xp =X
Yp=y
Zp = -d

(Xp, Yp)

= We actually want to keep Z
— why?

i Parallel Projection (2)

= OpenGL maps (projects) everything in
the visible volume into a canonical view

volume
(xmax‘,ﬂnax, -far) @1 -1
e
(xmin, ymin, -near; (-1,-1, 1)

glOrtho(xmin, xmax, ymin, ymax, Canonical View Volume

near, far)

i Parallel Projection (3)

= Transformation sequence:
1. Translation (M1): (-near = zmax, -far = zmin)

-(xmax+xmin)/2, -(ymax+ymin)/2, -(zmax+zmin)/2
2. Scaling (M2):

2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

2/(xmax-xmin) 0 0 - (xmax+xmin)/(xmax-xmin)
M2 x M1 = 0 2/(ymax-ymin) 0 - (ymax+ymin)/(ymax-ymin)
0 0 2/(zmax-zmin) -(zmax+zmin)/(zmax-zmin)
0 0 0 1

i Perspective Projection

= Side view:

Projection plane

y (xy.2)
B o Based on similar triangle:
xy.z)
0,00 .~ » y _ -z
z y — d

o | ‘
d
2 =) Y=y x
-z

Eye (projection center)

i Perspective Projection (2)

= Same for x. So we have:

X =xxd/-z
y=yxd/-z
z’=-d

= Putin a matrix form:

X 1 0 0 0 X
y =/0 1 0 0 y
7 0 0 1 0 z
w 0 0 (1/-d) 0 1

= OpenGL assume d = 1, i.e. the image plane isat z = -1

i Perspective Projection (3)

= We are not done yet. We want to somewhat keep the z
information so that we can perform depth comparison

= Use pseudo depth — OpenGL maps the near plane to 1, and far
plane to -1

= Need to modify the projection matrix: solve a and b

X 1 00 0 X
Y| = 0 1 0 0 y
z 0 0 a b z

w 0 0 @1/-d) o 1

How to solve a and b?

10

M"e Projection (4)

= Solve aand b X 1 00 0 x
y | = 0O 1 0 0 y
z 0 0 a b z
w 0 0@~ ol |1
T T
= (0,0,1) = M x (0,0,-near) \
0,0-1) & Mx (0,0,-far) ' M
. -(far+near)/(far-near) « —— Verify this!

a=
b = (-2 x far x near) / (far-near)

i Perspective Projection (5)

= Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate
and scale) @

far

e

(top view)

ey

-1,-1)

= And takes care the case that eye is not at the center
of the view volume (shear)

i Perspective Projection (6)

= Final Projection Matrix:

X 2N/(xmax-xmin) 0 (xmax+xmin)/(xmax-xmin) 0 X
y = 0 2N/(ymax-ymin) (ymax+ymin)/(ymax-ymin) 0 y
z 0 0 -(F + N)/(F-N) -2F*N/(F-N) z
w 0 0 -1 0 1

1

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Mve Projection (7)

= After perspective projection, the viewing frustum is
also projected into a canonical view volume (like in
parallel projection)

1,-1)

(-1,-1, 1)

Canonical View Volume

11

i Flexible Camera Control

= Instead of provide COl, it is possible to just
give camera orientation

= Just like control a airplane’s orientation

y y 5
¢ 0 3
X X
pitch yaw roll

i Flexible Camera Control

= How to compute the viewing vector (x,y,z)
from pitch(¢) and yaw(0) ?

Z = Rcos(¢$)cos(90-0)
y y

X /= Rcos(¢)cos(0)

y = Rsin($)

i Flexible Camera Control

= gluLookAt() does not let you to control pitch
and yaw

= you need to compute/maintain the vector by
yourself

= And then calculate COI = Eye + (x,y,2)
before you can call gluLookAt().

12

