
1

Introduction to 3D viewing

3D is just like taking a photograph!

Viewing Transformation

Position and orient your camera

Projection Transformation

Control the “lens” of the camera
Project the object from 3D world to 2D screen

Viewing Transformation (2)
Important camera parameters to specify

Camera (eye) position (Ex,Ey,Ez) in world coordinate
system
Center of interest (coi) (cx, cy, cz)
Orientation (which way is up?) View-up vector
(Up_x, Up_y, Up_z)

world
(cx, cy, cz)

(ex, ey, ez)
view up vector
(Up_x, Up_y, Up_z)

2

Viewing Transformation (3)

Transformation?
Form a camera (eye) coordinate frame

Transform objects from world to eye space

world

uv n

x

y

z

Eye coordinate frame
coi world

uv n

x

y

z

(0,0,0)
coi

Viewing Transformation (4)

Eye space?

Transform to eye space can simplify many
downstream operations (such as projection) in the
pipeline

(1,0,0)(0,1,0)
(0,0,1)

Viewing Transformation (5)

In OpenGL:
- gluLookAt (Ex, Ey, Ez, cx, cy, cz,

Up_x, Up_y, Up_z)
- The view up vector is usually (0,1,0)
- Remember to set the OpenGL matrix mode to

GL_MODELVIEW first

Viewing Transformation (6)

void display()
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

}

3

Demo Projection Transformation

Important things to control
Perspective or Orthographic
Field of view and image aspect ratio
Near and far clipping planes

Perspective Projection

Characterized by object foreshortening
- Objects appear to be larger if they are closer to
the camera
- This is what happens in the real world

Need:
Projection center
Projection plane

Projection: Connecting the object
to the projection center projection plane

camera

Orthographic Projection

No foreshortening effect – distance from
camera does not matter
The projection center is at infinite

Projection calculation – just drop z
coordinates

4

Field of View

Determine how much of the world is taken into the
picture

The larger is the field view, the smaller is the object
projection size

x

y

z

y

z θ

field of view

center of projection

Near and Far Clipping Planes

Only objects between near and far planes are
drawn

Near plane + far plane + field of view =
Viewing Frustum

x

y

z

Near plane Far plane

Viewing Frustum

3D counterpart of 2D world clip window

Objects outside the frustum are clipped

x

y

z

Near plane Far plane

Viewing Frustum

Projection Transformation

In OpenGL:
Set the matrix mode to
GL_PROJECTION
Perspective projection: use

gluPerspective(fovy, aspect, near, far) or
glFrustum(left, right, bottom, top, near, far)

Orthographic:
glOrtho(left, right, bottom, top, near, far)

5

gluPerspective(fovy, aspect, near, far)

Aspect ratio is used to calculate the
window width

x

y

z

y

z fovy

eye

near farAspect = w / h

w

h

glFrustum(left, right, bottom, top, near, far)

Or You can use this function in place of
gluPerspective()

x

y

z

left

right
bottom

top

near far

glOrtho(left, right, bottom, top, near, far)

For orthographic projection

x

y

z

left

rightbottom

top

near
far

Projection Transformation

void display()
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJETION);
glLoadIdentity();
gluPerspective(fove, aspect, near, far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

}

6

Demo 3D viewing under the hood

Modeling Viewing Projection
Transformation Transformation Transformation

Viewport
Transformation

Display

3D viewing under the hood

Viewing transformation
Projection transformation

Topics of Interest:

Viewing Transformation

Transform the object from world to eye
space

Construct an eye space coordinate frame
Construct a matrix to perform the

coordinate transformation
Flexible Camera Control

7

Eye Coordinate Frame

Known: eye position, center of interest, view-up
vector
To find out: new origin and three basis vectors

eye

center of interest (COI)
Assumption: the direction of view is
orthogonal to the view plane (the plane
that objects will be projected onto)

90
o

Eye Coordinate Frame (2)
Origin: eye position (that was easy)
Three basis vectors: one is the normal vector (n) of
the viewing plane, the other two are the ones (u and
v) that span the viewing plane

eye
Center of interest (COI)

n

u
v

world origin
Remember u,v,n should
be all unit vectors

n is pointing away from the
world because we use right
hand coordinate system

N = eye – COI
n = N / | N |

(u,v,n should be orthogonal to each other)

Eye Coordinate Frame (3)

How about u and v?

eye
COI

n

u
v

V_up

We can get u first -

u is a vector that is perpendicular
to the plane spanned by
N and view up vector (V_up)

U = V_up x n

u = U / | U |

Eye Coordinate Frame (4)

How about v?

eye
COI

n

u
v

V_up

Knowing n and u, getting v is
easy

v = n x u

v is already normalized

8

Eye Coordinate Frame (5)

Put it all together

eye
COI

n

u
v

V_up

Eye space origin: (Eye.x , Eye.y, Eye.z)

Basis vectors:

n = (eye – COI) / | eye – COI|
u = (V_up x n) / | V_up x n |
v = n x u

World to Eye Transformation

Transformation matrix (M w2e) ?

P’ = M w2e x P

uv

n

world

x

y

z

P

1. Come up with the transformation
sequence to move eye coordinate
frame to the world

2. And then apply this sequence to the
point P in a reverse order

World to Eye Transformation

Rotate the eye frame so that it will be “aligned” with
the world frame
Translate (-ex, -ey, -ez)

uv

n

world

x

y

z

(ex,ey,ez)

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

How to verify the rotation matrix?

Translation: 1 0 0 -ex
0 1 0 -ey
0 0 1 -ez
0 0 0 1

World to Eye Transformation (2)

Transformation order: apply the transformation to
the object in a reverse order - translation first, and
then rotate

Mw2e =

uv

n

world
x

y

z

(ex,ey,ez)

ux uy ux 0 1 0 0 -ex
vx vy vz 0 0 1 0 -ey
nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1

9

World to Eye Transformation (3)

Head tilt: Rotate your head by δ
Just rotate the object about the eye space z axis - δ
Mw2e = cos(-δ) -sin(-δ) 0 0 ux uy ux 0 1 0 0 -ex

sin(-δ) cos(-δ) 0 0 vx vy vz 0 0 1 0 -ey
0 0 1 0 nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1 0 0 0 1

uv

n

world
x

y

z

Why -δ ?

When you rotate your head by δ, it is like
rotate the object by –δ

Projection Transformation

Projection – map the object from 3D space
to 2D screen

x

y

z

x

y

z

Perspective: gluPerspective() Parallel: glOrtho()

Parallel Projection

After transforming the object to the eye space,
parallel projection is relative easy – we could just
drop the Z

Xp = x
Yp = y
Zp = -d

We actually want to keep Z
– why?

x

y

z
(x,y,z)

(Xp, Yp)

Parallel Projection (2)

OpenGL maps (projects) everything in
the visible volume into a canonical view
volume

(-1, -1, 1)

(1, 1, -1)

Canonical View VolumeglOrtho(xmin, xmax, ymin, ymax,
near, far)

(xmin, ymin, -near)

(xmax, ymax, -far)

10

Parallel Projection (3)

Transformation sequence:
1. Translation (M1): (-near = zmax, -far = zmin)

-(xmax+xmin)/2, -(ymax+ymin)/2, -(zmax+zmin)/2

2. Scaling (M2):
2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

2/(xmax-xmin) 0 0 - (xmax+xmin)/(xmax-xmin)
M2 x M1 = 0 2/(ymax-ymin) 0 - (ymax+ymin)/(ymax-ymin)

0 0 2/(zmax-zmin) -(zmax+zmin)/(zmax-zmin)
0 0 0 1

Perspective Projection

Side view:
x

y

z

(0,0,0)

d

Projection plane

Eye (projection center)

(x,y,z)

(x’,y’,z’)

-z

z

y
Based on similar triangle:

y -z
y’ d

d
Y’ = y x

-z

=

Perspective Projection (2)

Same for x. So we have:
x’ = x x d / -z
y’ = y x d / - z
z’ = -d

Put in a matrix form:

x’ 1 0 0 0 x
y’ = 0 1 0 0 y
z’ 0 0 1 0 z
w 0 0 (1/-d) 0 1

OpenGL assume d = 1, i.e. the image plane is at z = -1

Perspective Projection (3)
We are not done yet. We want to somewhat keep the z
information so that we can perform depth comparison

Use pseudo depth – OpenGL maps the near plane to 1, and far
plane to -1

Need to modify the projection matrix: solve a and b
x’ 1 0 0 0 x
y’ = 0 1 0 0 y
z’ 0 0 a b z
w 0 0 (1/-d) 0 1

x

y
z

Z = 1 z = -1 How to solve a and b?

11

Perspective Projection (4)

Solve a and b

(0,0,1) = M x (0,0,-near)
(0,0,-1) = M x (0,0,-far)

a = -(far+near)/(far-near)
b = (-2 x far x near) / (far-near)

x’ 1 0 0 0 x

y’ = 0 1 0 0 y

z’ 0 0 a b z

w 0 0 (1/-d) 0 1

T

T

T

T M

Verify this!

Perspective Projection (5)
Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate
and scale)

And takes care the case that eye is not at the center
of the view volume (shear)

x

y
z

Z = 1 z = -1 (-1, -1)

(1, 1)

eye

near

far

(top view)

Perspective Projection (6)
Final Projection Matrix:

x’ 2N/(xmax-xmin) 0 (xmax+xmin)/(xmax-xmin) 0 x

y’ = 0 2N/(ymax-ymin) (ymax+ymin)/(ymax-ymin) 0 y

z’ 0 0 -(F + N)/(F-N) -2F*N/(F-N) z

w’ 0 0 -1 0 1

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Perspective Projection (7)

After perspective projection, the viewing frustum is
also projected into a canonical view volume (like in
parallel projection)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

12

Flexible Camera Control

Instead of provide COI, it is possible to just
give camera orientation

Just like control a airplane’s orientation

pitch

φ
x

y

yaw

θ

y

x

roll

δ

Flexible Camera Control

How to compute the viewing vector (x,y,z)
from pitch(φ) and yaw(θ) ?

θ

y

x
φ

Φ = 0
θ = 0

R

R cos(φ)

y = Rsin(φ)

x

y

z

x = Rcos(φ)cos(θ)
z = Rcos(φ)cos(90-θ)

z

Flexible Camera Control

gluLookAt() does not let you to control pitch
and yaw
you need to compute/maintain the vector by
yourself
And then calculate COI = Eye + (x,y,z)
before you can call gluLookAt().

