Introduction to 3D viewing

- 3D is just like taking a photograph!

Viewing Transformation

- Position and orient your camera

Projection Transformation

- Control the "lens" of the camera
- Project the object from 3D world to 2D screen

Viewing Transformation (2)

- Important camera parameters to specify
- Camera (eye) position (Ex,Ey,Ez) in world coordinate system
- Center of interest (coi) (cx, cy, cz)
- Orientation (which way is up?) View-up vector (Up_x, Up_y, Up_z)

(cx, cy, cz)
view up vector (Up_x, Up_y, Up_z)

Viewing Transformation (3)

- Transformation?
- Form a camera (eye) coordinate frame

- Transform objects from world to eye space

Viewing Transformation (4)

- Eye space?

- Transform to eye space can simplify many downstream operations (such as projection) in the pipeline

Viewing Transformation (5)

- In OpenGL: OpenGL.
- gluLookAt (Ex, Ey, Ez, cx, cy, cz,
Up_x, Up_y, Up_z)
- The view up vector is usually $(0,1,0)$
- Remember to set the OpenGL matrix mode to GL_MODELVIEW first

Viewing Transformation (6)

void display()
\{
glClear(GL_COLOR_BUFFER_BIT); glMatrixMode(GL_MODELVIEW);
glLoadl dentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine
\}

Demo

Command manipulation window
fovy aspect 2 Near zFar
gluPerspective($60.0,1.00,1.0,10.0$);
gluLookAt($0.00,0.00,2.00, \quad$ <- eye
$0.00,0.00,0.00, \quad$ <- center
$0.00,1.00,0.00$); <- up

Click on the arguments and move the mouse to modify values.

Projection Transformation

- Important things to control
- Perspective or Orthographic
- Field of view and image aspect ratio
- Near and far clipping planes

Perspective Projection

- Characterized by object foreshortening
- Objects appear to be larger if they are closer to the camera
- This is what happens in the real world
- Need:
- Projection center
- Projection plane
- Projection: Connecting the object to the projection center

projection plane

Orthographic Projection

- No foreshortening effect - distance from camera does not matter
- The projection center is at infinite

- Projection calculation - just drop z coordinates

Field of View

- Determine how much of the world is taken into the picture

> center of projection

- The larger is the field view, the smaller is the object projection size

Near and Far Clipping Planes

- Only objects between near and far planes are drawn

- Near plane + far plane + field of view = Viewing Frustum

Viewing Frustum

- 3D counterpart of 2D world clip window

- Objects outside the frustum are clipped

Projection Transformation

- In OpenGL:
- Set the matrix mode to GL_PROJ ECTION
- Perspective projection: use
- gluPerspective(fovy, aspect, near, far) Or
- glFrustum(left, right, bottom, top, near, far)
- Orthographic:
- glOrtho(left, right, bottom, top, near, far)

gluPerspective(fovy, aspect, near, far)

- Aspect ratio is used to calculate the window width

gIFrustum(left, right, bottom, top, near, far)
- Or You can use this function in place of gluPerspective()

glOrtho(left, right, bottom, top, near, far)

- For orthographic projection

Projection Transformation

void display()
\{
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_PROJ ETION);
glLoadl dentity();
gluPerspective(fove, aspect, near, far); glMatrixMode(GL_MODELVI EW);
glLoadl dentity();
gluLookAt(0,0,1,0,0,0,0,1,0);
display_all(); // your display routine

Demo

Command manipulation window
fovy aspect 2 Near zFar
gluPerspective($60.0,1.00,1.0,10.0$);
gluLookAt($0.00,0.00,2.00, \quad$ <- eye
$0.00,0.00,0.00, \quad$ <- center
$0.00,1.00,0.00$); <- up

Click on the arguments and move the mouse to modify values.

3D viewing under the hood

3D viewing under the hood

Topics of Interest:

- Viewing transformation
- Projection transformation

Viewing Transformation

- Transform the object from world to eye space
- Construct an eye space coordinate frame
- Construct a matrix to perform the coordinate transformation
- Flexible Camera Control

Eye Coordinate Frame

- Known: eye position, center of interest, view-up vector
- To find out: new origin and three basis vectors

Assumption: the direction of view is orthogonal to the view plane (the plane that objects will be projected onto)

Eye Coordinate Frame (2)

- Origin: eye position (that was easy)
- Three basis vectors: one is the normal vector (\mathbf{n}) of the viewing plane, the other two are the ones (\mathbf{u} and v) that span the viewing plane

\mathbf{n} is pointing away from the world because we use right hand coordinate system
$\mathbf{N}=$ eye - COI
$\mathbf{n}=\mathbf{N} /|\mathrm{N}|$

Remember $\mathbf{u}, \mathbf{v}, \mathbf{n}$ should be all unit vectors

Eye Coordinate Frame (3)

- How about u and v ?

We can get u first -

u is a vector that is perpendicular to the plane spanned by
N and view up vector (V_up)

$$
\begin{aligned}
\mathrm{U} & =\mathrm{V}_{-} \mathbf{u p} \times \mathbf{n} \\
\mathbf{u} & =\mathrm{U} /|\mathrm{U}|
\end{aligned}
$$

Eye Coordinate Frame (4)

- How about v?

Knowing n and u, getting v is easy

Eye Coordinate Frame (5)

- Put it all together

Eye space origin: (Eye.x , Eye.y, Eye.z)
Basis vectors:

World to Eye Transformation

- Transformation matrix ($\mathrm{M}_{\text {wze }}$) ?

$$
P^{\prime}=M_{w z e} P
$$

1. Come up with the transformation sequence to move eye coordinate frame to the world
2. And then apply this sequence to the point P in a reverse order

World to Eye Transformation

- Rotate the eye frame so that it will be "aligned" with the world frame
- Translate (-ex, -ey, -ez)

Rotation:

```
ux uy uz 0
vx vy vz 0
nx ny nz 0
\(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\)
```

How to verify the rotation matrix?

Translation: $\left\lvert\, \begin{array}{cccc}1 & 0 & 0 & -e x \\ 0 & 1 & 0 & -e y \\ 0 & 0 & 1 & -e z \\ 0 & 0 & 0 & 1\end{array}\right.$

World to Eye Transformation (2)

- Transformation order: apply the transformation to the object in a reverse order - translation first, and then rotate

World to Eye Transformation (3)

- Head tilt: Rotate your head by δ
- Just rotate the object about the eye space z axis - δ
- Mw2e $=\left|\begin{array}{cccc}\cos (-\delta) & -\sin (-\delta) & 0 & 0 \\ \sin (-\delta) & \cos (-\delta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right|\left|\begin{array}{cccc}u x & u y & u x & 0 \\ v x & v y & v z & 0 \\ n x & n y & n z & 0 \\ 0 & 0 & 0 & 1\end{array}\right|\left|\begin{array}{cccc}1 & 0 & 0 & -e x \\ 0 & 1 & 0 & -e y \\ 0 & 0 & 1 & -e z \\ 0 & 0 & 0 & 1\end{array}\right|$

Projection Transformation

- Projection - map the object from 3D space to 2D screen

Perspective: gluPerspective()

Parallel: glOrtho()

Parallel Projection

- After transforming the object to the eye space, parallel projection is relative easy - we could just drop the Z

$$
\begin{aligned}
& X p=x \\
& Y p=y \\
& Z p=-d
\end{aligned}
$$

- We actually want to keep Z
- why?

Parallel Projection (2)

- OpenGL maps (projects) everything in the visible volume into a canonical view volume

glOrtho(xmin, xmax, ymin, ymax, near, far)

Parallel Projection (3)

- Transformation sequence:

1. Translation (M1): (-near $=z m a x,-f a r=z m i n)$
$-(x m a x+x m i n) / 2,-(y m a x+y m i n) / 2, \quad-(z m a x+z m i n) / 2$
2. Scaling (M2):

2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

$$
M 2 \times M 1=\left|\begin{array}{cccc}
2 /(x \max -x \min) & 0 & 0 & -(x \max +x \min) /(x \max -x \min) \\
0 & 2 /(y \max -y \min) & 0 & -(y \max +y \min) /(y \max -y \min) \\
0 & 0 & 2 /(z \max -z \min) & -(z \max +z \min) /(z \max -z \min)
\end{array}\right|
$$

Perspective Projection

- Side view:

Eye (projection center)

Based on similar triangle:

$$
\frac{y}{y^{\prime}}=\frac{-z}{d}
$$

$$
\Longrightarrow \quad Y^{\prime}=y \times \frac{d}{-z}
$$

Perspective Projection (2)

- Same for x. So we have:

$$
\begin{aligned}
& x^{\prime}=x \times d /-z \\
& y^{\prime}=y \times d /-z \\
& z^{\prime}=-d
\end{aligned}
$$

- Put in a matrix form:

$$
\begin{gathered}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{gathered}=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & (1 /-d) & 0
\end{array}\right| \quad\left|\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right|
$$

- OpenGL assume $d=1$, i.e. the image plane is at $z=-1$

Perspective Projection (3)

- We are not done yet. We want to somewhat keep the z information so that we can perform depth comparison
- Use pseudo depth - OpenGL maps the near plane to 1, and far plane to -1
- Need to modify the projection matrix: solve a and b
$\left|\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w\end{array}\right|=\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & (1 /-d) & 0\end{array}\right|\left|\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right|$

How to solve a and b ?

Perspective Projection (4)

- Solve a and b

$$
\left|\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right|=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & (1 /-d) & 0
\end{array}\right|\left|\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right|
$$

$(0,0,1)^{\top}=M \times(0,0,- \text { near })^{\top}$
$(0,0,-1) \stackrel{T}{=} M \times(0,0,- \text { far })^{\top}$

- $\quad \mathrm{a}=-(\mathrm{far}+$ near)/(far-near)

$b=$ ($-2 \times$ far \times near) $/$ (far-near)

Perspective Projection (5)

- Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to $[-1,1]$ (translate and scale)

- And takes care the case that eye is not at the center of the view volume (shear)

Perspective Projection (6)

- Final Projection Matrix:

| x^{\prime} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| y^{\prime} |$=|$| $2 N /(x \max -x \min)$ | 0 | $(x \max +x \min) /(x \max -x \min)$ | 0 |
| :---: | :---: | :---: | :---: |
| 0 | $2 N /(y \max -y m i n)$ | $(y \max +y m i n) /(y \max -y m i n)$ | 0 |
| z^{\prime} | | | |
| 0 | 0 | $-(F+N) /(F-N)$ | $-2 F^{*} N /(F-N)$ |
| w^{\prime} | 0 | 0 | -1 |

glFrustum(xmin, xmax, ymin, ymax, \mathbf{N}, \mathbf{F}) $\quad \mathrm{N}=$ near plane, $\mathrm{F}=$ far plane

Perspective Projection (7)

- After perspective projection, the viewing frustum is also projected into a canonical view volume (like in parallel projection)

Canonical View Volume

Flexible Camera Control

- Instead of provide COI, it is possible to just give camera orientation
- Just like control a airplane's orientation

Flexible Camera Control

- How to compute the viewing vector (x, y, z) from $\operatorname{pitch}(\phi)$ and $\operatorname{yaw}(\theta)$?

Flexible Camera Control

- gluLookAt() does not let you to control pitch and yaw
- you need to compute/maintain the vector by yourself
- And then calculate COI = Eye $+(x, y, z)$ before you can call gluLookAt().

