

Introduction to 3D viewing

3D is just like taking a photograph!

Viewing Transformation

Position and orient your camera

Projection Transformation

- Control the "lens" of the camera
- Project the object from 3D world to 2D screen

Viewing Transformation (2)

- Important camera parameters to specify
 - Camera (eye) position (Ex,Ey,Ez) in world coordinate system
 - Center of interest (coi) (cx, cy, cz)
 - Orientation (which way is up?) View-up vector (Up_x, Up_y, Up_z)

Viewing Transformation (3)

- Transformation?
 - Form a camera (eye) coordinate frame

Transform objects from world to eye space

Viewing Transformation (4)

Eye space?

 Transform to eye space can simplify many downstream operations (such as projection) in the pipeline

Viewing Transformation (5)

In OpenGL:

- gluLookAt (Ex, Ey, Ez, cx, cy, cz, Up_x, Up_y, Up_z)
- The view up vector is usually (0,1,0)
- Remember to set the OpenGL matrix mode to GL_MODELVIEW first

Viewing Transformation (6)

```
void display()
{
    glClear(GL_COLOR_BUFFER_BIT);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt(0,0,1,0,0,0,0,1,0);
    display_all(); // your display routine
}
```

Demo

Projection Transformation

- Important things to control
 - Perspective or Orthographic
 - Field of view and image aspect ratio
 - Near and far clipping planes

Perspective Projection

- Characterized by object foreshortening
 - Objects appear to be larger if they are closer to the camera
 - This is what happens in the real world
- Need:
 - Projection center
 - Projection plane
- Projection: Connecting the object to the projection center

Orthographic Projection

- No foreshortening effect distance from camera does not matter
- The projection center is at infinite

Projection calculation – just drop z coordinates

Field of View

Determine how much of the world is taken into the picture

 The larger is the field view, the smaller is the object projection size

Near and Far Clipping Planes

 Only objects between near and far planes are drawn

Near plane + far plane + field of view =
 Viewing Frustum

Viewing Frustum

3D counterpart of 2D world clip window

Objects outside the frustum are clipped

Projection Transformation

In OpenGL:

- Set the matrix mode to GL_PROJECTION
- Perspective projection: use
 - gluPerspective(fovy, aspect, near, far) or
 - glFrustum(left, right, bottom, top, near, far)
- Orthographic:
 - glOrtho(left, right, bottom, top, near, far)

gluPerspective(fovy, aspect, near, far)

Aspect ratio is used to calculate the window width

glFrustum(left, right, bottom, top, near, far)

 Or You can use this function in place of gluPerspective()

glOrtho(left, right, bottom, top, near, far)

For orthographic projection

Projection Transformation

```
void display()
    glClear(GL_COLOR_BUFFER_BIT);
    glMatrixMode(GL_PROJETION);
    glLoadIdentity();
    qluPerspective(fove, aspect, near, far);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt(0,0,1,0,0,0,0,1,0);
    display_all(); // your display routine
```

Demo

3D viewing under the hood

Modeling Transformation

Viewing Transformation **Projection Transformation**

Viewport Transformation

Display

3D viewing under the hood

Topics of Interest:

- Viewing transformation
- Projection transformation

Viewing Transformation

- Transform the object from world to eye space
 - Construct an eye space coordinate frame
 - Construct a matrix to perform the coordinate transformation
 - Flexible Camera Control

Eye Coordinate Frame

- Known: eye position, center of interest, view-up vector
- To find out: new origin and three basis vectors

Assumption: the direction of view is orthogonal to the view plane (the plane that objects will be projected onto)

Eye Coordinate Frame (2)

- Origin: eye position (that was easy)
- Three basis vectors: one is the normal vector (n) of the viewing plane, the other two are the ones (u and

v) that span the viewing plane

n is pointing away from the world because we use right hand coordinate system

$$\mathbf{N} = \text{eye} - \text{COI}$$

 $\mathbf{n} = \mathbf{N} / |\mathbf{N}|$

Remember **u,v,n** should be all unit vectors

-

Eye Coordinate Frame (3)

How about u and v?

We can get u first -

u is a vector that is perpendicular to the plane spanned by N and view up vector (V_up)

$$U = V_up x n$$

 $u = U / |U|$

Eye Coordinate Frame (4)

How about v?

Knowing n and u, getting v is easy

v = n x u

v is already normalized

Eye Coordinate Frame (5)

Put it all together

Eye space origin: (Eye.x , Eye.y, Eye.z)

Basis vectors:

World to Eye Transformation

Transformation matrix (M w2e) ?

$$P' = M_{w2e x} P$$

- 1. Come up with the transformation sequence to move eye coordinate frame to the world
- 2. And then apply this sequence to the point P in a reverse order

World to Eye Transformation

- Rotate the eye frame so that it will be "aligned" with the world frame
- Translate (-ex, -ey, -ez)

How to verify the rotation matrix?

World to Eye Transformation (2)

 Transformation order: apply the transformation to the object in a reverse order - translation first, and then rotate

World to Eye Transformation (3)

- Head tilt: Rotate your head by δ
- Just rotate the object about the eye space z axis δ

Why $-\delta$?

When you rotate your head by δ , it is like rotate the object by $-\delta$

Projection Transformation

 Projection – map the object from 3D space to 2D screen

Perspective: gluPerspective()

Parallel: glOrtho()

•

Parallel Projection

 After transforming the object to the eye space, parallel projection is relative easy – we could just drop the Z

$$Xp = x$$

 $Yp = y$
 $Zp = -d$

We actually want to keep Z– why?

Parallel Projection (2)

 OpenGL maps (projects) everything in the visible volume into a canonical view volume

Parallel Projection (3)

Transformation sequence:

```
    Translation (M1): (-near = zmax, -far = zmin)
    -(xmax+xmin)/2, -(ymax+ymin)/2, -(zmax+zmin)/2
```

2. Scaling (M2):

2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

Perspective Projection

Side view:

Projection plane

Eye (projection center)

Based on similar triangle:

$$\frac{y}{y'} = \frac{-z}{d}$$

$$Y' = y \times \frac{u}{-z}$$

-

Perspective Projection (2)

Same for x. So we have:

$$x' = x \times d / -z$$

 $y' = y \times d / - z$
 $z' = -d$

Put in a matrix form:

$$x'$$
 | 1 0 0 0 | x | y | y | z' | 0 0 1 0 | z | w | 0 0 (1/-d) 0 | 1

OpenGL assume d = 1, i.e. the image plane is at z = -1

Perspective Projection (3)

- We are not done yet. We want to somewhat keep the z information so that we can perform depth comparison
- Use pseudo depth OpenGL maps the near plane to 1, and far plane to -1
- Need to modify the projection matrix: solve a and b

$$\begin{vmatrix} x' \\ y' \\ z' \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & (1/-d) & 0 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

How to solve a and b?

Perspective Projection (4)

Solve a and b

$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & (1/-d) & 0 \end{vmatrix} \begin{vmatrix} x \\ y \\ z' \end{vmatrix}$$

 $(0,0,1)^{T} = M \times (0,0,-near)^{T}$ $(0,0,-1)^{T} = M \times (0,0,-far)^{T}$

a = -(far+near)/(far-near) \leftarrow Verify this! b = (-2 x far x near) / (far-near)

Perspective Projection (5)

 Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to [-1, 1] (translate and scale)

 And takes care the case that eye is not at the center of the view volume (shear)

Perspective Projection (6)

Final Projection Matrix:

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Perspective Projection (7)

 After perspective projection, the viewing frustum is also projected into a canonical view volume (like in parallel projection)

Flexible Camera Control

- Instead of provide COI, it is possible to just give camera orientation
- Just like control a airplane's orientation

Flexible Camera Control

How to compute the viewing vector (x,y,z) from pitch(φ) and yaw(θ)?

Flexible Camera Control

- gluLookAt() does not let you to control pitch and yaw
- you need to compute/maintain the vector by yourself
- And then calculate COI = Eye + (x,y,z) before you can call gluLookAt().