
Using GLU/GLUT Objects

GLU/GLUT provides very simple object
primitives

glutWireCube
glutWireCone

gluCylinder

glutWireTeapot

GLU/GLUT Objects

Each glu/glut object has its default size, position, and
orientation
You need to perform modeling transformation to
make it right for you

glutWireCube(1.0) - ‘wire’ means wire frame

Put a 1x1x1 cube with its center at world
(0,0,0)

To create a 2 x 0.1 x 2 table top - need to call glScalef(2, 0.1, 2) before you
call glutWireCube(1.0)

gluCylinder()
Three steps to create a cylinder

Base

y

x

z

1. Create a GLU quadric object
GLUquadricObj *p = gluNewQuadric();

2. Set to wire frame mode
gluQuadricDrawStyle(GLU__LINE);

3. Derive a cylinder object from p
gluCylinder(p, base, top, height, slice, stacks)

base
radius

top
radius height

num. of vertical lines
num. of horizontal lines

sphere, cylinder,
disk, partial disk

The default position is also with base at z = 0 plane

glutWireCone()

Use glutWireCone and gluCylinder to
make a lamp

glutWireCone(base, height, slices, stacks)

- A polygon approximation of a cone.

Default position: its base at Z = 0 plane
base: the width of its base
height: the height of the cone
slices: the number of vertical lines used

to make up the cone
stace: the number of horizontal lines used

to make up the cone Base

y

x

z

glutWireTeapot()

The famous Utah Teapot has become
an unofficial computer graphics mascot

glutWireTeapot(0.5) -

Create a teapot with size 0.5, and position
its center at (0,0,0)

Again, you need to apply transformations to position it at the right spot

Transformations

Two ways to specify transformations
(1) Each part of the object is transformed
independently relative to the origin
Not the OpenGL Way!

Translate the base by (5,0,0);
Translate the lower arm by (5,00);
Translate the upper arm by (5,00);
…

x
z

y

Relative Transformation

A better (and easier) way:
(2) Relative transformation: Specify the transformation

for each object relative to its parent

Object Dependency

A graphical scene often consists of many
small objects
The attributes of an object (positions,
orientations) can depend on others

base

lower arm

upper arm

hammerA Robot Hammer!

Hierarchical Representation - Scene Graph

We can describe the object dependency
using a tree structure

Base

Lower arm

Upper arm

Hammer

Root node

Leaf node

The position and orientation of
an object can be affected
by its parent, grand-parent,
grand-grand-parent … nodes

This hierarchical representation
is referred to as Scene Graph

Relative Transformation

Relative transformation: Specify the transformation for
each object relative to its parent

Step 1: Translate base and
its descendants by (5,0,0);

Relative Transformation (2)

Step 2: Rotate the lower arm and all its descendants
relative to its local y axis by -90 degree

x
z

y

x

z

y

Relative Transformation (3)

Represent relative transformations
using scene graph

Base

Lower arm

Upper arm

Hammer

Rotate (-90) about its local y

Translate (5,0,0)

Apply all the way
down

Apply all the way
down

Do it in OpenGL
Translate base and all its descendants by (5,0,0)
Rotate the lower arm and its descendants by -90
degree about the local y

Base

Lower arm

Upper arm

Hammer

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

… // setup your camera

glTranslatef(5,0,0);

Draw_base();

glRotatef(-90, 0, 1, 0);

Draw_lower _arm();
Draw_upper_arm();
Draw_hammer();

A more complicated example

How about this model?

base

Right hammerleft hammer

Scene Graph?

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)

Do this …

Base and everything – translate (5,0,0)
Left hammer – rotate 75 degree about the local y
Right hammer – rotate -75 degree about the local y

Depth-first traversal

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)

Do transformation(s)

Draw base

Do transformation(s)

Draw left arm

Do transformation(s)

Draw right arm

What are they?

Depth First Traversal

• Program this transformation by depth-first traversal

How about this?

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)

Draw base

Draw left hammer

Draw right hammer

Translate(5,0,0)

Rotate(75, 0, 1, 0)

Rotate(-75, 0, 1, 0)

What’s wrong?!

Something is wrong …
What’s wrong? – We want to transform the right
hammer relative to the base, not to the left hammer

How about this?

Do

Draw base

Do

Draw left hammer

Do

Draw right hammer

Translate(5,0,0)

Rotate(75, 0, 1, 0)

Rotate(-75, 0, 1, 0)

What’s wrong?!

We should undo the
left hammer transformation
before we transform the right
hammer

Need to undo this
first

Undo the previous transformation(s)

Need to save the modelview matrix right after we
draw base

Initial modelView M

Draw base

Draw left hammer

Draw right hammer

Translate(5,0,0) -> M = M x T

Rotate(75, 0, 1, 0)

Rotate(-75, 0, 1, 0)

Undo the previous transformation
means we want to restore the
Modelview Matrix M to what
it was here

i.e., save M right here
…

And then restore the saved
Modelview Matrix

OpenGL Matrix Stack

We can use OpenGL Matrix Stack to perform matrix
save and restore

Initial modelView M

Do

Draw base

Do

Draw left hammer

Do

Draw right hammer

Translate(5,0,0) -> M = M x T

Rotate(75, 0, 1, 0)

Rotate(-75, 0, 1, 0)

* Store the current modelview matrix
- Make a copy of the current matrix
and push into OpenGL Matrix Stack:
call glPushMatrix()

- continue to modify the current
matrix

* Restore the saved Matrix
- Pop the top of the Matrix and
copy it back to the current
Modelview Matrix:
Call glPopMatrix()

Push and Pop Matrix Stack

A simple OpenGL routine:

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)
Depth First Traversal

glTranslate(5,0,0)
Draw_base();
glPushMatrix();

glRotate(75, 0,1,0);
Draw_left_hammer();

glPopMatrix();
glRotate(-75, 0,1,0);
Draw_right_hammer();

push
pop

Push and Pop Matrix Stack

Nested push and pop operations

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
… // Transform using M1;
… // Transform using M2;
glPushMatrix();
… // Transform using M3
glPushMatrix();
.. // Transform using M4
glPopMatrix();
…// Transform using M5
…
glPopMatrix();

Modelview matrix (M) Stack

M = I
M = M1
M = M1 x M2 M1xM2

M = M1 x M2 x M3 M1xM2xM3
M1 x M2

M = M1 x M2 x M3 x M4
M = M1 x M2 x M3

M1 x M2
M = M1 x M2 x M3 x M5

M = M1 x M2

