
Computer Science and Engineering College of Engineering The Ohio State University

Ruby:
Blocks, Hashes, and Symbols

Lecture 8

Computer Science and Engineering The Ohio State University

Blocks

 A block is a statement(s) passed in as
an argument to a function

5.times do
puts 'hello world'

end

 Equivalent, but more succinct:
5.times { puts 'hello world' }

 A block can, itself, have parameters!
5.times { |n| puts n**2 }

 Method calls block, passing in arguments

Computer Science and Engineering The Ohio State University

Calling Blocks

 Within a function, the passed-in block
is called with keyword “yield”
def fib_up_to(max)
i1, i2 = 1, 1
while i1 <= max

yield i1 if block_given?
i1, i2 = i2, i1 + i2

end
end
fib_up_to(1000) { |f| print "#{f} " }
fib_up_to(1000) { |f| sum += f }

Computer Science and Engineering The Ohio State University

Idioms for Blocks

 Bracketed code (eg open, do stuff, close)
File.open('notes.txt', 'w') do |file|
file << 'work on 3901 project'

end # file closed by open method

 Nested scope (eg for initialization code)
agent = Mechanize.new do |a|
a.log = Logger.new ('log.txt')
a.user_agent_alias = 'Mac Safari'

end # isolates init'n code and temp var a

 Iteration (very common)…

Computer Science and Engineering The Ohio State University

Simple Iteration
 While/until loop: Boolean condition

while boolean_condition
…

end
 For-in loop: iterate over arrays (and other

things like ranges)
for var in array

…
end
 Example
for str in 'hi'..'yo'

puts str.upcase
end
 Usually avoided (rubystyle.guide/#no-for-loops)

Computer Science and Engineering The Ohio State University

Iterating on Arrays Using Blocks
 Do something with every element

a.each { |str| puts str.upcase }
 Do something with every index

a.each_index { |i| print "#{i}--" }
 Fill array with computed values

a.fill { |i| i * i }
a.fill { |i| [] } # or omit i: { |_| [] }

 Search
a.index { |x| x > limit }

 Filter
a.select! { |v| v =~ /[aeiou]/ }
a.reject! { |v| v =~ /[aeiou]/ } # aka filter

 Sort
a.sort! { |x, y| x.length <=> y.length }

Computer Science and Engineering The Ohio State University

Map

 Transform an array into a new array,
element by element

 Uses block to calculate each new value
a.map { |item| block } # also !

a

resulting
array

item

block

Computer Science and Engineering The Ohio State University

Map: Examples
names = %w{ali noah marco xi}
#=> ["ali", "noah", "marco", "xi"]

names.map { |name| name.capitalize }
#=> ["Ali", "Noah", "Marco", "Xi"]

names.map { |name| name.length }
#=> [3, 4, 5, 2]

[1, 2, 3, 4].map { |i| i**2 }
#=> [1, 4, 9, 16]

[1, 2, 3, 4].map { |i| "x^#{i}" }
#=> ["x^1", "x^2", "x^3", "x^4"]

Computer Science and Engineering The Ohio State University

Reduce

 Transform an array into a single value,
by incorporating one element at a time
 Also called “fold”, or “inject”

 Uses block with 2 arguments: current
accumulation and next array element
a.reduce(init) { |acc, item| block }
 Value returned by block is the next acc
 a[0] is initial acc, if init not provided

 Example: Sum the values of an array
 [15, 10, 8] 0 + 15 + 10 + 8 33

Computer Science and Engineering The Ohio State University

Reduction Chain

a

resulting
value

item

block

acc

init

Computer Science and Engineering The Ohio State University

Reduce: Examples
[3, 4, 5].reduce { |sum, i| sum + i } #=> 12

[1, 2, 3, 4, 5].reduce '' do |str, i|
str + i.to_s

end #=> "12345"

words = %w{cat sheep bear}
words.reduce do |memo, word|

memo.length > word.length ? memo : word
end #=> "sheep"

[1, 2, 3].reduce [] do |acc, i|
acc.unshift i

end #=> ???

Computer Science and Engineering The Ohio State University

Module: Enumerable
 Quantify over elements

['hi', 'yo!'].all? { |w| w.length > 2 }
(0..100).any? { |x| x < 0 } #=> false
[1, 2, 3].none? { |x| x % 2 == 0 }

 Min/Max
words.max_by { |x| x.length }

 Search
(1..10).find_all { |i| i % 3 == 0 }

#=> [3, 6, 9]
 Map/reduce (only non-! version)

(5..8).map { 2 } #=> [2, 2, 2, 2]
(1..10).reduce(:+) #=> 55
book.reduce(0) { |sum, w| sum + w.length}

Computer Science and Engineering The Ohio State University

Your Turn

 Given a string
 Produce an array of indices where ‘#’

occurs in the string
 Example:
 Given
'a#asg#sdfg#d##'

 Result
[1, 5, 10, 12, 13]

Computer Science and Engineering The Ohio State University

Your Turn

 Given an array of integers
 Produce the array that includes only

the even elements, each squared
 Example:
 Given
[1, 2, 3, 7, 7, 1, 4, 5, 6, 2]

 Result
[4, 16, 36, 4]

Computer Science and Engineering The Ohio State University

Your Turn

 Given an array of (a mix of) integers
and array of integers, where the (top
level) integers are unique

 Remove from the contained arrays all
occurrences of the top level integers

 Example:
 Given
[3, 5, [4, 5, 9], 1, [1, 2, 3, 8, 9]]

 Result
[3, 5, [4, 9], 1, [2, 8, 9]]

Computer Science and Engineering The Ohio State University

Example: What Does This Do?
words = File.open('tomsawyer.txt') { |f|

f.read }.split
freq, max = [], ''
words.each do |w|
max = w if w.length > max.length
freq[w.length] = 0 if !freq[w.length]
freq[w.length] += 1

end
puts words.length
puts words.reduce(0) { |s, w| s + w.length }
freq.each_index do |i|
puts "#{i}-letter words #{freq[i]}"

end
puts max

Computer Science and Engineering The Ohio State University

Hashes
 Partial map: keys values
 Keys must be unique

 Indexed with array syntax []
h['hello'] = 5

 Literal syntax for initialization
h = {'red' => 0xf00,

'green' => 0x0f0,
'blue' => 0x00f }

 Optional: Instantiate with a default value
(or block)

h1 = Hash.new 0 #=> beware aliases
h2 = Hash.new { |h, k| h[k] = k + k }

Computer Science and Engineering The Ohio State University

Using Hashes
h = {'age' => 21} # create new Hash
h['age'] += 1 # mutable values
h['id'] = 0x2a # can grow
h.size #=> 2
h['name'] = 'Luke' # heterog. values
h[4.3] = [1, 3, 5] # heterog. keys
h.delete 'id' # can shrink

h == {'age' => 22,
'name' => 'Luke',
4.3 => [1, 3, 5]}

Computer Science and Engineering The Ohio State University

Example
list = %w{cake bake cookie car apple}

Group by string length:
groups = Hash.new{ |h, k| h[k] = [] }
list.each { |v|
groups[v.length] << v

}
groups == { 4 => ["cake", "bake"],
6 => ["cookie"],
3 => ["car"], 5 => ["apple"] }

Computer Science and Engineering The Ohio State University

Your Turn

 Write the Ruby code that, given an
array of strings, computes frequency
of occurrence of each word

 Example:
 Given

["car", "van", "car", "car"]

 Compute
{"car" => 3, "van" => 1}

Computer Science and Engineering The Ohio State University

Example

list = %w{car van car car}

Your code here

groups #=> {"car" => 3, "van" => 1}

Computer Science and Engineering The Ohio State University

Using Blocks with Hashes

 Do something with every key/value
pair
h.each {|k, v| print "(#{k},#{v})"}

 Do something with every key or value
h.each_key { |k| print "#{k}--" }
h.each_value { |v| print "#{v}--" }

 Combine two hashes
h1.merge(h2) { |k, v1, v2| v2 – v1 }

 Filter
a.delete_if { |k, v| v =~ /[aeiou]/ }
a.keep_if { |k, v| v =~ /[aeiou]/ }

Computer Science and Engineering The Ohio State University

Immutability of Keys

 Rule: Once a key is in a hash, never
change its value
grades[student] = 'C+'
student.wake_up! # danger

 Problem: Aliases
 “Solution”: For strings, Ruby copies (and

freezes) a string when added to a hash
a, b = String.new('fs'), String.new('sn')
h = {a => 34, b => 44}
puts a.object_id, b.object_id
h.each_key { |key| puts key.object_id }

Computer Science and Engineering The Ohio State University

Symbols

 Roughly: unique & immutable strings
 Syntax: prefix with ":"

:height
:'some symbol'
:"#{name}'s crazy idea"

 Easy (too easy?) to convert between
symbols and strings
:name.to_s #=> "name"
'name'.to_sym #=> :name

 But symbols are not strings
:name == 'name' #=> false

Computer Science and Engineering The Ohio State University

Operational View

 A symbol is created once, and all uses
refer to that same object (aliases)

 Symbols are immutable
 Example

[].object_id #=> 200
[].object_id #=> 220
[].equal? [] #=> false
:world.object_id #=> 459528
:world.object_id #=> 459528
:world.equal? :world #=> true

Computer Science and Engineering The Ohio State University

Symbols as Hash Keys

 Literal notation, but note colon location!
colors = {red: 0xf00,

green: 0x0f0,
blue: 0x00f}

 This is just syntactic sugar
 {name: value} same as {:name => value}
 The key is a symbol (eg :red)

 Pitfalls
colors.red #=> NoMethodError
colors["red"] #=> nil
colors[:red] #=> 3840 (ie 0xf00)

Computer Science and Engineering The Ohio State University

Keyword Arguments
 Alternative to positional matching of

arguments with formal parameters
def display(first:, last:)

puts "Hello #{first} #{last}"
end
display first: 'Mork', last: 'Ork'
display last: 'Hawking', first: 'Steven'

 Providing a default value makes that
argument optional
def greet(title: 'Dr.', name:)
puts "Hello #{title} #{name}"

end
 Benefits: Client code is easier to read,

and flexibility in optional arguments

Computer Science and Engineering The Ohio State University

Summary

 Blocks
 Code passed as argument to a function
 Elegant iteration over arrays

 Enumerable
 Many useful iteration methods

 Hashes
 Partial maps (aka associative arrays)

 Symbols
 Unique, immutable strings
 Often used as keys in hashes

