Using Model Checking to Find a Hidden Evader

Christopher A. Bohn*
bohn@cis.ohio-state.edu

Paolo A.G. Sivilotti
paolo@cis.ohio-state.edu weide@cis.ohio-state.edu

Bruce W. Weide

Department of Computer and Information Science
The Ohio State University
2015 Neil Avenue
Columbus, Ohio 43210-1277 USA

ABSTRACT

We present a pursuer-evader game in which the pursuer has
a speed advantage over the evader but is incapable of de-
termining the evader’s location unless they both occupy the
same location. By treating the players as nondeterministic
finite automata, we can model the game and use it as the in-
put for a model checker. By specifying that there is no way
to guarantee the pursuer can locate the evader, the model
checker will either confirm that this is the case, or it will
provide a counterexample showing one search pattern for
the pursuer that will guarantee the evader must eventually
be caught. We show two such models and discuss variations
to be investigated.

Keywords
Model checking, Unmanned aerial vehicle, Pursuer-evader
game

1. INTRODUCTION

We have formulated a pursuer-evader game in which the pur-
suer can move faster than the evader, but the pursuer cannot
ascertain the evader’s location unless they occupy the same
location. The pursuer’s object is to occupy the same location
as the evader eventually, whereas the object for the evader
is to prevent collocation with the pursuer indefinitely. The
game is loosely based on autonomous unmanned aerial vehi-
cles (UAVs) with limited field-of-view attempting to locate
an enemy vehicle on the ground.

In the game’s simplest form, the game is played on a recti-
linear grid with the one pursuer and the one evader taking
turns to move. There are no obstacles to either the pursuer
or evader, so each can occupy any location and can transition

*The views expressed in this article are those of the author
and do not necessarily reflect the official policy of the Air
Force, the Department of Defense or the U.S. Government.

| e
4# O 4 1
3 3)
2 l_'I 2
1 ! 1
0 0

01 2 3 4 5 001 2 3 4 5

(a) Pursuer’s (b) Evader’s
turn turn

Figure 1: Examples of movements by the pursuer
and the evader. Solid circle is the pursuer; hollow
circle is the evader.

from any location to any adjacent location. Consider Fig-
ure 1. In Figure 1(a), the pursuer moves four spaces north
and west on a 6 x 6 board; this is followed by the evader
moving south one space in Figure 1(b). There are four basic
variations on this form, based on the definition of “adja-
cent location”. In all four variants, the players can move in
the four cardinal directions (north, south, east, west); the
variations are whether the pursuer, the evader, both, or nei-
ther can move diagonally (northwest, northeast, southwest,
southeast). These simplifications facilitate an analysis of the
necessary pursuer speed, though this analysis is beyond the
scope of this paper.

We also are investigating the automatic generation of search
strategies for the pursuer that will guarantee that it will
eventually locate the evader, as generalizing the game be-
yond its simple forms may not have easily-provable results,
and they probably would require more time to hand-prove
than is available (as a single data-point, we obtained our
early empirical results well before our theoretical results
were proven). We generate the search strategies using sym-
bolic model checking. The simplifications described in the
previous paragraph simplify the models we generate for the
model checker, which helps us to refine the technique de-
scribed in this paper.

In the remainder of this paper, we will offer an introduction
to model checking in Section 2 and a description of how we
use model checking to generate winning strategies for the

pursuer in Section 3. Then we will present an example in
Section 4 and discuss the directions our research is going in
Section 5.

2. MODEL CHECKING

Model checking is a technique for verifying that finite state
concurrent systems satisfy certain properties expressed in a
temporal logic; typical examples of its use are in complex
digital circuit designs and in communication protocols [1].

Symbolic model checking has three properties that are par-
ticularly desirable. First is that a model can be checked in
time linear in the number of the model’s states; more pre-
cisely, checking a specification f expressed as a predicate in
Computation Tree Logic (CTL) requires O ((|S]| + |R]) - | f])
time, where S is the set of states and R is the set of tran-
sitions between states in the model [1]. The second is that
the model’s states are not represented explicitly; rather the
model checker uses binary decision diagrams. Because of
this, symbolic model checkers use less memory than explicit-
state model checkers for a given model (or, for the same
memory footprint, symbolic model checkers can check larger
models). When first introduced ten years ago, symbolic
model checking could verify models with up to 102°(~2%¢)
states; subsequent refinements have permitted the checking
of models with up to 10'2°(72%98) states [1].

The third property is that if the specification being checked
is not satisfied by the model, the model checker will provide a
specific counterexample showing why the property does not
hold. We make use of this last capability by modeling the
game as a nondeterministic finite automaton and instructing
the model checker to prove that no matter how the pursuer
moves, the evader can successfully avoid the pursuer. If the
model checker indicates this property is true, then for the
given game conditions there is no guarantee the pursuer and
evader will be collocated. On the other hand, if the model
checker indicates the property is false, then as a counterex-
ample, it will indicate the model’s state changes that, when
properly interpreted, correspond to a sequence of moves the
pursuer can make to guarantee it must locate the evader
before the sequence is complete. We are pleased to report
that the results of model checking the game’s simple forms
correspond to our analytical results, even though the se-
quence of pursuer moves provided by the model checker do
not correspond to those used in the proofs of our analysis.

3. MODEL CHECKING THE GAME

Model checking this game is not as simple as one might
hope. The naive modeler might encode the pursuer as mov-
ing nondeterministically from its current location to an ad-
jacent location, and encode the evader similarly. The prob-
lem is that when the model checker is instructed to check
whether the evader can always avoid detection, the model
checker promptly offers the counterexample of the pursuer
and evader approaching each other. This is not a useful re-
sult. Instead, we encode the pursuer as above, but instead of
modeling the evader explicitly, we assign a predicate cleared
to each location on the grid. A grid location is cleared if
and only if it is not possible for the evader to occupy that
location, given that the pursuer has not located the evader.
Saying that all locations on the grid have been cleared is
equivalent to saying that the pursuer has located the evader.

o N oW s »

(a) Before
pursuer
moves
5 s 1]
4 4
3 3 _3
{ \-_
2 | 2 \ /
| { \._
1 1 \ <
{ \._
0 0 _/
01 2 3 4 5 01 2 3 4 5
(b) Pursuer’s (¢) Evader’s
turn turn

Figure 2: Examples of changes in the possible lo-
cations for the evader. Evader is known to be in
unshaded region.

A location becomes cleared when the pursuer occupies that
location, and it ceases to be cleared if it is possible for the
evader to move into that location. Now the property to be
checked is whether there is always at least one grid location
that remains not cleared. If there model checker confirms
this property is satisfied, then there is no pursuer strategy
that will guarantee its victory; on the other hand, if the
property is not satisfied, then the counterexample can be
used as the pursuer’s search strategy to clear every location.

Compare Figure 2 with Figure 1. In this hypothetical sce-
nario, the pursuer has cleared a region of the southwest
corner of the grid, as shown by the shaded portion of Fig-
ure 2(a)) and can conclude the evader must be outside that
region. As in Figure 1(a), the pursuer moves four spaces
north and west in Figure 2(b), increasing the cleared region
by three cells. Since the pursuer does not know where the
evader is located, the cleared region must shrink in accor-
dance with the union of all possible moves by the evader. A
move by the evader south from the northeastern-most corner
would not cause the evader to enter a previously-cleared cell,
but Figure 2(c) shows there are six ways the evader could
move from an uncleared cell into a cleared cell, and the five
cleared cells that could now be occupied by the evader may
no longer be considered cleared.

The astute reader will note that the state space in this new
model is considerably greater than in the naive model. Ne-
glecting overheads such as variables used to synchronize the
pursuer and evader, if the grid has n locations, then the
state space of the first model has n® states — n possible
locations for the pursuer and n possible locations for the
evader. In the second model, while the pursuer still has n

Board Number of | Pursuer Speed | Number of | Reachable

Dimensions | Locations (moves/turn) States States Time Memory
2x%x2 4 2 288 266 0.01s 1.2MB
2 x4 8 2 2136 21TI 0.04s 1.3MB
3x3 9 3 2152 2133 0.08s 1.3MB
3x5 15 3 2719 217e 0.66s 2.6MB
4x4 16 4 2233 2194 5.39s 7.3MB
4x6 24 4 2319 2233 7m 26s | 52.1MB
5 x5 25 5 9332 2257 2h 4m 3s | 180.4M B
5x7 35 5 2137 ?? > 24h ??
6 %6 36 6 2150 ?? > 24h ??

Table 1: Time and memory requirements to obtain a pursuer search strategy.

Execution Time

1000

5)(5/
1000

time (szecnds)
=]

/]

1
k-3 A 2/" = E: 32
x5

k<)
o1

7

22

logZnumber of states)

Figure 3: Time required by model checker to com-
plete, by the the size of the game model.

possible locations, there is not an evader; instead, there are
n boolean variables. This means the state space in the new
model has n-2" states. When the number of states is expo-
nential in the size of the grid, being able to check properties
in time that is linear in the number of states still requires
time that is exponential in the size of the grid. Table 1
and Figures 3 and 4 shows the execution time and mem-
ory displacement to run the model checker SMV [2] on a
933MHz Pentium III system for different-sized boards with
movement only in the four cardinal directions. The jagged
appearance of the graphs is the effect of including data from
n X n boards and n X (n + 2) boards on the same graph.

Coping with this complexity is critical if we are to improve
the fidelity of the models relative to their real-world in-
spiration. After looking into alternative logics, including
Alternating-Time Temporal Logic (ATL) [3] and a proposed
variant, Blinded ATL, we have concluded there is no escap-
ing this complexity. Instead we are investigating ways to
reduce the state space by constraining the forms solutions
might have.

4. EXAMPLE

The SMV model checker’s input language consists of mod-
ules organized as a collection of variables and their update
actions. The distinguished main module is used to instanti-

Memory Usage

10m

x5

memery allacation (magabytes)

e 24 2@ | x5

PP
fraal—

] 4 8 2 8 o 24 = =
logZnumter of states)

Figure 4: Memory displacement of model checker,
by the size of the game model.

ate the other modules into a concurrent system. All assign-
ment statements in main and all instantiated modules are
executed in parallel [4]. We shall now present and describe
two models used to generate winning pursuer strategies.

4.1 Full model for 2 x 2 grid

The first model is that for a 2 x 2 grid with the pursuer and
evader moving only in the four cardinal directions. Though
this is a small grid size, the structure of the models is suffi-
ciently regular that the reader should be able to infer what
a larger model would look like.

‘We begin with the outline of the main module and the vari-
able it’s responsible for, the clock:

MODULE main
VAR
clock : 0..2;

DEFINE

speed := 2;

ticks := speed + 1;
ASSIGN

init(clock) 0;

next(clock) clock + 1 mod ticks;

SPEC

Here we define the pursuer’s speed as 2, and so the clock has
four ticks, 0..3. Initially, clock is assigned the value 0, and in
each round it is updated by 1 modulo ticks. By convention,
the pursuer moves when 0 < clock < speed, and the evader
moves when clock = speed.

Now we consider the module for each cell on the grid:

MODULE cell(x , y ,n , w , € , s ,
hunter , timer)
VAR
inferClear :
DEFINE
occupied := (x=hunter.x &
y=hunter.y);
neighborsClear := (n.cleared &
w.cleared &
e.cleared &
s.cleared);
cleared := (inferClear | occupied);
ASSIGN
init(inferClear)
next(inferClear)
case
timer = 2 : occupied |
(inferClear & neighborsClear);
! (timer = 2) : cleared;
esac;

boolean;

0;

A cell is defined by its location on the grid (z,y) and its
neighbors (n,w, e, s). The instantiation parameters hunter
and timer are used to create aliases to the pursuer and the
clock, respectively, so the assignment statements can query
their states. We define occupied as the predicate that the
hunter’s x and y values are identical to those of the cell,
and we define the predicate neighborsClear as the conjunct
of whether the cells to the north, west, east, and south are
cleared. The predicate cleared is the disjunction of whether
the cell is occupied (in which case it is trivially cleared) and
of whether we can infer the cell to be cleared. The variable
inferClear is initially FALSE. If it is the pursuer’s turn to
move, inferClear assumes the value of the cleared predicate
from the previous clock tick. If it is the evader’s turn to
move, then as with Figure 2(c), inferClear can remain TRUE
only if it’s occupied or if it was already cleared and all its
neighbors are cleared.

Since the evader cannot leave the grid, we define nullCells

to serve as neighbors to cells along the grid boundary;
nullCells are always cleared:

MODULE nullCell
DEFINE
cleared := 1;

The only module remaining is that for the pursuer:

MODULE pursuer(timer)

VAR
x : 0..1;
y : 0..1;
moveDirection : { xx , yy };

ASSIGN

init(x) := 0;
init(y) := 0;

init(moveDirection) := { xx , yy };
next(moveDirection) := { xx , yy };
next(x) :=
case
moveDirection = xx & !(timer = 2)
case
x=0:{ 0,11}
x=1: {0, 1 };
esac;
moveDirection = yy | timer = 2 : x;
esac;
next(y) :=
case
moveDirection = yy & !(timer = 2)
case
y=0:{ 0, 11};
y=1:{0,1 };
esac;
moveDirection = xx | timer = 2 : y;
esac;

As with a cell, a pursuer occupies some location on the
grid(z, y), which range over the dimensions of the grid; the
variable moveDirection is a modeling artifact to ensure the
pursuer does not move diagonally. As with the cell mod-
ule, the pursuer module maintains an alias to the clock in
the timer parameter. Initially, a pursuer is positioned in
the southwest corner (0,0), and its initial moveDirection is
a nondeterministic choice. In each subsequent round, the
choice of moveDirection remains nondeterministic. To up-
date the z variable, the pursuer must be moving in the zz
direction, and it must be the pursuer’s turn to move. If
z can be updated, then in general it can be decremented,
maintained, or incremented — if x is either its least or great-
est value, then care must be taken not to update x to a value
outside its range. The update for y is analogous.

Now that we’ve defined all the necessary modules, we can
instantiate them in the main module:

MODULE main
VAR
clock : 0..2;
UAV : pursuer(clock);
cNul : nullCell;
c0_0 : cell(0, 0, cO_1 , cNul ,
c1_0 , cNul , UAV , clock);
cO_1 : cell(0 , 1, cNul , cNul ,
ci_1, c0_0 , UAV , clock);
cl 0 :cell(1, 0, ci_1, c0_0,
cNul , cNul , UAV , clock);
cli_1 :cell(1, 1, cNul , cO_1 ,
cNul , c1_0 , UAV , clock);

DEFINE

speed := 2;

ticks := speed + 1;
ASSIGN

init(clock) 0;

next(clock) clock + 1 mod ticks;

SPEC

All that remains is the specification, expressed as a CTL for-
mula. Typically, this would be some property of the model
that the modeler would want to be satisfied. What is the

property that we want? That all cells are cleared:

c0.0.cleared N c0_1.cleared A
cl_0.cleared A cl_l.cleared

We want this state predicate to eventually be TRUE, and we
express this by creating a path formula with the state for-
mula preceded by an F (eventually, or “in the future on this
path”). We only require that this path formula be satisfied
in at least one possible computation, and this would be the
computation the pursuer would follow; we express this by
creating a state formula with the path formula preceded by
an E (existentially, or “a path exists a path”). This creates
the following formula that we require to be satisfied in the
initial state:

EF c0.0.cleared A c0_1.cleared A
cl 0.cleared N cl_l.cleared

If we were to use this specification, then SMV would re-
turn with the answer that, yes, the specification is satisfied
— there does exist a computation path along which there is
some future state in which all cells are cleared. But we
desire to know how to get to that future state. Recalling
that SMV provides a counterexample whenever the specifi-
cation is not satisfied, we negate the specification we just
formulated — we instruct the model checker to prove that no
computation exists:

SPEC
'EF (
c0_0.cleared & cO_1l.cleared &
cl_O.cleared & cl1_1.cleared
)

It is useful to observe that this formula is equivalent to ex-
pressing that invariantly, at least one cell is not cleared.
“Invariantly” is described with A G, where A is the univer-
sal quantifier (“all paths”) and G is the always operator
(“globally on this path):

SPEC
AG ! (
c0_0.cleared & cO_1l.cleared &
cl_O.cleared & cl_1.cleared

)

This observation is useful for more than as an exercise in

quantifier/operator manipulation; with appropriate command-

line arguments, SMV can make use of certain optimizations
to reduce the execution time when checking such “AG” spec-
ifications.

The counterexample produced by the model checker when it
finds the specification is not satisfied shall be the very path
we want the pursuer to use. By causing all cells to be cleared,
the pursuer is guaranteed to have found the evader at some
point during the game. For this small 2 x 2 problem, the
counterexample is the pursuer moving from (0,0) to (0, 1)
and to (1,1). The evader then moves, and (0, 0) is no longer
cleared. Now the pursuer moves from (1,1) to (1,0) and to
(0,0), and all cells have been cleared.

(a) Before column is
cleared

(b) After column is
cleared

Figure 5: Abstraction of grid unbounded in the z
direction.

4.2 Abstracted model for o x 6 grid

We noted at the end of Section 3 that if we constrained the
form of the pursuer’s search strategy, then we can keep the
state space relatively small. For the simple game variant
that we have presented here, one such restriction is that the
pursuer clears column of the grid while preventing the evader
from moving into previously-cleared column, and then the
pursuer positions itself to clear the next column. If we ob-
tain a computation path that describes this, and we repeat-
edly apply it, then the pursuer will “sweep” across the grid,
eventually clearing all locations.

Consider Figure 5. We may consider this to be a grid with an
arbitrary number of cleared columns to the west and an ar-
bitrary number of uncleared columns to the east. If it’s ever
possible for the evader to enter the westernmost region, then
the technique of clearing columns will not compose, and so
while maintaining the possibility that the “cell” at the west-
ern edge of the grid can become uncleared, we require that it
remain cleared. Contrariwise, the “cell” at the eastern edge
will never be cleared since we will not permit the pursuer to
move too far from the column it must clear. By limited the
pursuer to the current column and two more to the east, we
keep the state space small; our model has 2% states, with
2211 of them reachable — compare this to the state spaces
in Table 1.

The building-block modules for this new model are the same
as in the previous model, with two exceptions. The x vari-
ables range over 1..3 instead of 0..Tmaqz, and there is one
addition, a borderCell module that will be used at the west-
ernmost and easternmost positions of the grid:

MODULE borderCell(b0 , bl , b2 ,

b3 , b4 , b5 ,
initClear , timer)

VAR
inferClear : boolean;
DEFINE
occupied := 0;
neighborsClear := (bO.cleared &
&
b5.cleared);
cleared := (inferClear | occupied);
ASSIGN
init(inferClear) := initClear;
next(inferClear) :=

case
timer = 6 : occupied |
(inferClear & neighborsClear);
! (timer = 6) : cleared;
esac;

Not surprisingly, this module is similar to the cell mod-
ule. The first difference is that the borderCell doesn’t have
an alias to the pursuer and isn’t instantiated with its coor-
dinates, since we are constraining the pursuer such that it
cannot occupy a borderCell. Instead, the initial value of in-
ferClear is passed as a parameter — the western borderCell
must always be cleared, and the eastern borderCell is never
cleared.

The modules are instantiated in main:

MODULE main
VAR
clock : 0..6;

UAV : pursuer(clock);
cNul : nullCell;
c0 : borderCell(c1_0 , c1_1 , c1_2 ,
cl 3, cl1 4, cl 5,
1, clock);
cl 0 :cell(1,0, ci1_1, cO ,
c2_0 , cNul , UAV , clock);
cl 1 :cell(1,1, cl 2, cO ,
c2_1 , c1_0 , UAV , clock);

c3.4 : cell(3,4, c3.5, c2_.4 ,
c4 , ¢3_3 , UAV , clock);
c3_5 : cell(3,5, cNul , c2_5 ,
c4 , c3_4 , UAV , clock);
cd : borderCell(¢3_.0 , c3_1 , c3_2 ,
c3_.3, c3_4 , c3_5 ,
0 , clock);

And now we must formulate an appropriate specification.
We shall make use of CTL’s “until” operator (U). Specifi-
cally, c0.cleared must be TRUE until the pursuer has cleared
the current column and is positioned to clear the next col-
umn. When the pursuer has cleared the current column,
c0.cleared must still be TRUE, as must

/\ cl_y.cleared
0<y<6

When the pursuer is in position for the next column, it must
be in cell (2,0) or (2,5), and it must be the beginning of the
pursuer’s next turn (clock = 0). As with the specification
for the previous model, we only require this to occur along at
least one computation path, and to obtain the states along
that path, we negate the formula:

SPEC
'E [cO.cleared U (
clock=0 & cO.cleared &
UAV.x=2 & (UAV.y=0 | UAV.y=5) &
cl_O.cleared & cl_1.cleared &
cl_2.cleared & cl_3.cleared &
cl_4.cleared & cl1_5.cleared)]

Obtaining the counterexample (a computation path of 50
states) for the specification of this model requires 76 seconds
and 12.25 MB.

5. FUTURE WORK

The other paths along which our research is progressing are
variations on the game. This includes hexagonal grids, mul-
tiple cooperative pursuers, concurrent movement of the pur-
suer and evader, transitions which the pursuer and/or evader
cannot make, grid locations which the pursuer and/or evader
cannot occupy’, different fields of view for the pursuer, lim-
its on the pursuer’s turn radius, a known or bounded initial
position for the evader, and combinations thereof.

There are some simple ways to take advantage of having
multiple pursuers, such as dividing the grid and assigning
portions to each pursuer and using the single-pursuer solu-
tions — though even in this simple approach, some care is
needed or it might be possible for the evader, occupying a
section of the grid assigned to one pursuer, to move into
a section of the grid assigned to another pursuer that was
believed to be inaccessible to the evader. This care is obvi-
ously needed if the pursuers travel at different speeds, but
it is fact needed even when the pursuers are identical. Of
greater interest is whether there are faster solutions than
simply treating the multiple-pursuer variant as a collection
of smaller single-pursuer games. We believe this will become
even more interesting when applied to variations other than
a turn-based game with a simple rectilinear grid and no ob-
stacles. Another variant would be dealing with pursuers
that have different speeds and different capabilities, such as
a “hunter” UAV that locates targets and then leaves the tar-
get’s location to seek other targets while a “killer” UAV uses
the target’s known-initial location to re-locate and destroy
the target.

6. CONCLUSION

We have described a means to generate search strategies
that will guarantee a pursuer can locate an evader, or to es-
tablish that no such strategy exists. The state space grows
exponentially and generating search strategies becomes un-
wieldy with even relatively small problems. As we inves-
tigate more interesting game variants, this problem will be
exasperated. This has led us to investigate ways to constrain
the form the search strategies may take. One such example
in which we can compose the winning strategies of smaller
problems has been presented here, and we have shown that
a model checker can generate the composable strategies in
considerably less time than would be required to generate a
monolithic strategy.

LOf course, if there is some location the pursuer cannot oc-
cupy but the evader can, then there can be no guaranteed
win for the pursuer unless there is a fairness requirement
that the evader must infinitely-often not occupy any given
cell.

Acknowledgment

The authors gratefully thank the US Air Force and the Air
Force Institute of Technology for their direct support of the
primary author. This work was supported by the AFRL/VA
and AFOSR Collaborative Center of Control Science (Grant
F33615-01-2-3154).

7. REFERENCES

[1] Jr. Edmund M. Clark, Orna Grumberg, and Doron A.
Peled. Model Checking. Cambridge MA: The MIT
Press, 1999.

[2] The SMV system.
http://www.cs.cmu.edu/ modelcheck /smv.html.

[3] Rajeev Alur, Thomas A. Henzinger, and Orna
Kupferman. Alternating-time temporal logic. Journal
of the ACM, 49(5):672-713, September 2002.

[4] K.L. McMillan. The SMV System for SMV version
2.5.4, November 2000. User’s Manual.

