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Abstract

This paper describes cidl, a tool that helps CORBA developers test liveness properties in
distributed systems. Whereas sequential systems can be tested by examining initial states
and final outcomes, distributed systems frequently exhibit reactive behavior that occurs over
time. Liveness properties capture such behavior. Testing liveness, however, presents a sig-
nificant challenge because liveness violations can never be detected during a finite execution.
We present a testing technology for CORBA-based distributed systems. We define an ez-
tension to CORBA IDL for specifying a fundamental liveness property: transient. The
cidl tool uses this extension to generate a testing harness for tracking liveness. We describe
how to use cidl for testing and debugging and present a preliminary experience report.

1. Introduction

Testing involves comparing the actual behavior of software to its expected behavior. For
sequential systems, these behaviors are usually described in terms of initial and final states.
For example, the expected behavior might be given by an informal description of the output
generated from various input conditions or by a more formal description of preconditions
and postconditions. Actual system behavior is typically observed by running a thorough
test suite and examining the results. Whether formalized or not, this approach exploits the
semantics of sequential computation—a mapping from initial to final states.

Distributed systems, on the other hand, exhibit a different class of behavioral properties
based on a semantics of concurrent, reactive computation. Such systems are frequently
non-terminating and therefore have no final state. The expected behavior of a distributed
system is often given as a relation between the current and future states in the computation.
For example, a resource management system might guarantee that client requests to access a
resource are granted eventually. Properties that express a behavior occurring eventually are
known as liveness properties.[10] By their definition, liveness properties cannot be violated
by finite program executions. Liveness properties are a necessary and fundamental part of
the behavioral description of real distributed systems.[2]

This paper presents a tool (cidl) for testing liveness properties in distributed systems.
Because liveness properties cannot be violated by finite traces, they have received little at-
tention in the software testing community. While formal verification can be used to increase
confidence in the correctness of a system, this approach remains prohibitively expensive for



most real applications. Preliminary experience with cidl indicates that support for testing
liveness properties is, in fact, a valuable aid in program development.

Our testing technology is an integrated part of the CORBA [13] framework. The CORBA
standard defines an interface definition language (IDL) that is independent of any particular
implementation language. IDL is used to specify object signatures including types, function
names, argument types, and return types. As such, CORBA IDL is not expressive enough to
specify object behavior. In previous work [19], we introduced a certificate-based extension
to IDL that allows a developer to express liveness properties in terms of the transient
operator. This paper focuses on testing liveness properties using this extended IDL.

The rest of the paper is organized as follows. Section 2 defines transient, our funda-
mental operator for specifying liveness properties. Section 3 briefly discusses our extensions
to CORBA IDL. Section 4 presents cidl and reports our preliminary experiences with the
tool. Section 5 outlines extensions and future work. Finally, Sections 6 and 7 contrast this
project with some related work and summarize our findings.

2. Specifying Liveness with transient

2.1. The transient Operator

We choose transient as our fundamental liveness operator.! For a predicate P, we

write transient.P to mean that if P becomes true at any point in the computation,
eventually P becomes false. No assumptions can be made about how quickly P will
become false, only that it will happen eventually. Also, notice that transient.P is a
property of an entire object, rather than a particular method. In this sense, such a property
resembles a classic object invariant (although the behavior it represents is, in some sense,
the opposite of invariance).

We choose transient as our fundamental operator for expressing liveness for three
reasons. Firstly, it is closed under composition. That is, if transient.P is a property of
object A, it is a property of any system containing object A. Secondly, transient.P
is a property of a single object, so it can be tested without gathering global state and
determining consistent distributed snapshots. This issue is further discussed in Section 2.3.
Lastly, it is a fundamental operator for liveness. Other operators (such as those given
previously) can be defined in terms of transient .

2.2. An Underwater-Sensor Example

As an example, consider a current project in marine biology and environmental engi-
neering [5]. In this application, an array of buoys are deployed around a coral reef, each
supporting a series of submerged sensors. The sensors measure temperature, saline levels,
light attenuation, fish activities, currents, and pollution levels at various depths. Each
buoy has a radio link to the shore station responsible for gathering data and controlling
the instruments. Due to bandwidth constraints, a limited number of sensors can transmit
data at any one time. On the other hand, sensors only need to transmit “interesting” data,
defined by a range of readings and environmental stimuli. When the sensor is gathering
this data of interest, it is said to be in an alert state.

!Many other temporal operators have been used in the literature to express liveness properties. Common
examples include ¢ (pronounced “eventually”) [11], ensures [3], and leads —to [16].



The bandwidth limitation is enforced by using a fixed number of tokens. A sensor must
hold a token in order to transmit. When a sensor wishes to transmit, it must request
a token. A sensor holding a requested token must relinquish it if it is not transmitting.
The particulars of the algorithm used to arbitrate token-passing (e.g., ensuring absence of
starvation) are not our concern here.

In Figure 1, we present a simplified IDL for a sensor. This IDL defines the meth-
ods that one sensor can invoke on another. A sensor requests a token by invoking the
Request_Token() method on a sensor that holds one.

For example, consider a system with two sensors, A and B, and one token held by
B. When A enters its alert state (by virtue of some environmental stimulus), it invokes
B’s Request _Token() method. B relinquishes the token by calling A’s Grant Token()
method. A can then begin its transmission. Notice that all method invocations are oneway,
that is asynchronous. This allows sensor objects to continue gathering and processing data
while waiting for tokens to arrive.

interface Semsor {
oneway void Request_Token ();
oneway void Grant_Token ();

};

Figure 1. Interface of Sensor object

In the underwater-sensor example, the desired liveness property can be expressed as:
transient.(holding_token A request_pending)

where holding_token is a predicate that is true precisely when the object holds a token
and request_pending is a predicate that is true precisely when the object has received a
token request from another sensor and has not serviced that request.

Whereas a postcondition expresses a requirement on the behavior of an individual method,
a transient property can be seen as a requirement on the behavior of an entire object.
It is the responsibility of the object implementor to guarantee that the predicate does not
remain true forever. Clearly there are some transient properties that cannot be imple-
mented. The most basic example of such a property is transient.true. This is similar to
a method postcondition of false. Perhaps a more subtle example of a transient property
that cannot be implemented is the following:

transient.alert

This property requires the object to guarantee that eventually it will leave the alert state
(i.e., the sensor data is in the “interesting” range.) No implementation can unilaterally
guarantee this behavior, however, as it will depend on the environment in which it is
placed.

2.3. Testing Liveness

The property expressed by a precondition and postcondition specification is violated by
an execution in which the method is called with the proper precondition but terminates in
a state that does not satisfy the required postcondition. Such a property (called a safety
property) can be tested at run-time. If the property is violated, an exception can be raised,



an error message can be displayed, the program can be aborted, or some other action can
be taken.

Liveness properties, on the other hand, cannot be violated by any finite execution. In-
formally, even if a liveness property has not been satisfied during some finite execution,
there is a continuation of that execution for which it does hold. For example, if a liveness
property requires that a variable z eventually becomes greater than 10, how long do we
wait for this to occur? It is therefore not possible to detect, at run-time, the violation of a
liveness property.

It is possible, however, to detect when liveness has not been satisfied for a very long time.
Indeed, developers often have an intuition about how long to wait for a liveness property to
be satisfied. At the same time, liveness is a subtle requirement on object behavior and it is
common for developers to make mistakes in this part of the implementation. It is therefore
helpful to provide support for debugging a program that appears to be violating a liveness
property.

In order to monitor the potential violation of a transient property, we make use of a
time-stamped history. For example, consider the property:

transient.(holding_token N request_pending)

we can detect when the predicate holding_token A request_pending becomes true by
testing whether the predicate is true after object creation and after the execution of each
method. When the predicate becomes true, a time-stamp is stored for this event. When the
predicate becomes false, the time-stamp is cleared. Figure 2 illustrates this behavior. If the
tester suspects a lack of liveness in the program and aborts the execution, the transient
predicates can each be examined to see which ones are currently true and which one has
been true for the longest duration of time. This gives the tester an indication of where to
begin looking for the suspected error.
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Figure 2. Time-stamp history of a transient predicate

Notice that this methodology is consistent with current practices for testing liveness.
When lack of liveness is suspected, developers frequently insert print statements in an
attempt to observe in which state their application becomes deadlocked. When the program
appears to reach a fixed state, the execution is aborted and the fixed state is examined in
an attempt to unravel how this point was reached. Our methodology automates this ad hoc
approach by collecting the required information about which liveness requirements have
failed to be satisfied.



3. Extending CORBA IDL

Our liveness specification and debugging mechanism is realized in the context of CORBA
[13]. The CORBA standard for distributed object systems defines an implementation-
language independent notation for describing interfaces, known as IDL. We extend this
notation with a set of pragmas that allows the specification of liveness in terms of transience
as discussed above. We have chosen to use a pragma-based extension in order to ensure
that our enriched IDL descriptions remain backwards-compatible with standard CORBA
IDL.

The first extension is motivated by the fact that transient properties involve predicates
on object state. The interface description in CORBA IDL, however, does not contain any
state information (i.e., instance data). Indeed, requiring an object to expose its instance
data in the interface would be a violation of encapsulation. Instead, the transient predicates
are viewed as predicates on abstract state. This abstract state can be represented in IDL
without violating encapsulation, since the programmer is still free to choose any realization
of the abstraction. The use of abstract state is a well-established specification mechanism
[7].

For example, the IDL specification of a sensor object, augmented with abstract state, is
given in Figure 3. The abstract state is represented by a collection of variable declarations.
Each declaration uses C++ syntax and begins with #pragma state.

interface Sensor {
#pragma state enum {Normal, Alert} current;
#pragma state bool holding_token;
#pragma state bool request_pending;

oneway void Request_Token ();
oneway void Grant_Token ();

Figure 3. Interface of Sensor object extended with abstract state

The variables current, holding token, and request_pending are abstract. They are
not actual instance variables in the sensor object. Hence, the implementation of Sensor
must include a function that calculates these abstract variables from the actual object state
(i.e., an “abstraction function”). The signature of this function is automatically generated,
but the functionality must be implemented by the programmer. This is consistent with the
typical development path of a CORBA application: An IDL definition is written and tools
are used to create skeleton files containing method signatures for all methods declared in
the TDL.

Liveness properties are given in terms of this abstract state. For the sensor object, a
simple transient property might be that the object does not hold the token forever after
learning that another sensor needs the token.

We extend the IDL to include transient properties in the same manner as we did abstract
state data. Again we use pragmas and C++ syntax. Each predicate begins with #pragma
transient and is written as a C++ expression that evaluates to a boolean. See Figure 4
for a fully-extended interface definition of the underwater-sensor example.



interface Semsor {
#pragma state enum {Normal, Alert} current;
#pragma state bool holding_token;
#pragma state bool request_pending;
#pragma transient.(holding_token && request_pending)

oneway void Request_Token ();
oneway void Grant_Token ();

Figure 4. Interface of Sensor object extended to include transient property

4. Using cidl

The cidl tool is designed to integrate seamlessly with the standard CORBA development
cycle. A typical CORBA implementation uses a source-to-source translator to process a
file containing an IDL definition. For example:

% idl Sensor.idl

“Sensor.idl” is a file containing the interface definition for the underwater-sensor example.
The translator generates a collection of stub and skeleton files based on the information in
the IDL description. (The names and structures of these files is implementation-dependant.)
The developer then provides the intended functionality by writing code to extend these
skeletons.

The cidl tool is simply an augmentation of this source-to-source translator. It is invoked
in exactly the same manner.

% cidl Sensor.idl

This generates all of the same stub and skeleton files as the original translator. In ad-
dition, if Sensor.idl contains information about abstract state and transient proper-
ties, the cidl translator also produces class files that represent abstract state. In the
case of the underwater-sensor example, the files produced are named Sensor_state.h and
Sensor_state.cpp. In Figure 5, the extra files generated by the cidl tool are shaded.

Sensor. idl cidl Sensor. h

Sensor. cpp

Sensor _skel . h

Sensor _skel . cpp

Sensor _state. h

i

Sensor _state. cpp

Figure 5. Files created when cidl is run on Sensor.idl

In the following subsection we describe the content and structure of these extra files.



4.1. The Abstract-State Class

The cidl tool uses the state information provided in the extended IDL to create an
abstract-state class for the object. In the example given above, this abstract-state class is
called Sensor_state. The Sensor_state.h file contains the state members declared in the
IDL file, and is not modified by the developer. The Sensor _state.cpp file contains the
skeleton of the evaluate () method. The implementation of this method must be provided
by the developer. The generated skeleton signature for this method has a single argument,
a pointer to the implementation object (Sensor). Using this pointer, the developer writes
the mapping from the instance data to the abstract state.

The evaluate() Method

The implementation of the evaluate() method depends on the design specifics of a
given sensor object. Figure 6 shows a possible evaluate () method for a sensor object that
measures water temperature.

void evaluate (const *Sensor cs) {
// Evaluate whether sensor cs is in alert state
float delta_t = abs((cs -> current_temperature) - (cs -> avg_temperature));
if (delta_t > 2.0)
current = alert;
else
current = normal;
// Evaluate whether sensor cs has a token
holding_token = cs —-> have_token;
// Evaluate whether sensor cs has received a token request that
// has not yet been serviced
request_pending = ((cs -> requests_received) > (cs -> tokens_granted));

¥

Figure 6. Possible implementation of the evaluate() method

Figure 6 shows how the state of the implementation object (Sensor) can be used to
calculate the abstract state. To calculate current, the difference between instantaneous
and average temperature is compared with a threshold value. Data members of the Sensor
(i.e., current_temperature and avg_temperature) are used in this evaluation.

In calculating whether or not the sensor holds the token, a boolean have_token member
variable of the concrete state can be mapped directly to the holding token boolean of the
abstract state. Likewise, in determining whether a request is pending, the number of token
requests received by the sensor is compared to the number of times it has released a token.

4.2. Testing transient with cidl

In addition to providing the code for the evaluate () method, there is a minimal amount
of code that the developer must include in the implementation object:
1. The abstract-state object is declared to be a member of the object implementation.

2. The abstract-state class must be declared as a friend of the implementation class.
This allows the abstract state to access the instance data of the concrete object.



3. The abstract state is updated by the object after construction and after every method.
To do this, the developer must insert a call to do_update () at the end of each method.

Compilation and linkage of the application is the same as required by the CORBA vendor.
During a hypothetical execution and debugging session, the sensor object might create
the following output:

Transient Predicate 1 is (holding_token &% request_pending)

Predicate 1 is false.

Predicate 1 became true! (at time: 3.569532 seconds)

Predicate 1 remains true. (became true: 3.569532 seconds, true for: 1.763210 seconds)
Predicate 1 is false.

With this trace, the programmer sees the time when the sensor object entered a state
where the transient property might be violated. In this trace, we know that the property
has not been violated. Consider, on the other hand, the following trace instead:

Transient Predicate 1 is (holding_token && request_pending)

Predicate 1 is false.

Predicate 1 became true! (at time: 3.569532 seconds)

Predicate 1 remains true. (became true: 3.569532 seconds, true for: 1.763210 seconds)
Predicate 1 remains true. (became true: 3.569532 seconds, true for: 100.210324 seconds)

It is quite possible that this system does not meet the specified transient property. In
this case, the system could have encountered a fixed point at which it appears nothing is
happening. After almost two minutes of execution, the programmer halts execution and
consults this trace. While it appears that the transient property may not hold for this
implementation, there is no guarantee that this sensor would not have relinquished its token
at some point later in the execution.

4.3. Early Experience with cidl

The cidl tool has been used in a graduate course in Distributed Systems at The Ohio
State University. The focus of the class is on the pragmatics of distributed program-
ming using CORBA. Students undertake ambitious term-long projects (examples include
e-commerce applications, network protocols, distributed discrete-event simulators, and in-
teractive games). Students were given the cidl translator and accompanying libraries as a
development tool and debugging aid.

Afterwards, students completed a survey assessing the difficulty of learning the extended
IDL syntax as well as the utility in having the cidl tool as a debugging aid. The response
from the students was overwhelmingly positive. All of the students found the tool to
be quite easy to use. On average, the time spent writing additional code and compiling
additional files accounted for less than five percent of the total time devoted to the project.
Several students indicated that the tool helped them to isolate a number of errors in their
implementation.

5. Future Work

Future work on the cidl project will include extending the tool to recognize functionally
transient certificates introduced in [18]. Another enhancement of cidl will be the inclusion
of safety properties. Although testing safety properties is conceptually different from testing
liveness properties, such an extension will fit nicely in the existing architecture.



The current implementation of cidl uses exclusively the ORBacus CORBA implementa-
tion and the C++ programming language. An important improvement to the tool will be

to extend the tool to support debugging Java programs and to provide support for other
CORBA vendors.

6. Related Work

Semantic extensions to interface definitions for distributed objects are not new. The
definition in CORBA of an implementation language-independent notation for defining
interfaces is a particularly attractive vehicle for semantic specification constructs. It is
not surprising, then, that several proposals have been made to extend CORBA IDL. The
Object Management Group, originators of the CORBA standard, have formed a working
group to investigate different proposals for semantic extensions. Larch [6] is a two-tiered
specification language that has been applied to a variety of implementation languages,
including CORBA [17]. AssertMate [14] is a preprocessor that allows assertions to be
embedded in Java methods. Another recent example is the Biscotti [4] extension to Java
RMI. Our approach differs from this body of work in its capacity to express liveness
properties and hence its applicability to reactive and peer-to-peer distributed systems.

Temporal specifications in the spirit of “design-by-contract” have been developed to ex-
press component behavior contingent on the behavior of the larger system. Examples of
this approach include: rely-guarantee [8], hypothesis-conclusion [3], offers-using [9], mod-
ified rely-guarantee [12], and assumption-guarantee [1]. Our approach differs from this
body of work in our emphasis on testing. Because liveness properties are restricted to local
predicates, we are able to monitor whether these liveness properties are being satisfied.

Our approach to the specification and testing of distributed systems is similar in philoso-
phy to the extensions proposed to the Object Constraint Language in [15]. These extensions
also capture both safety and liveness and are designed to permit testing of the specifications.
Two principal differences are: (i) our explicit inclusion of quantification in the specification
notation, and (ii) our integration of the specification with the usual CORBA development
cycle (i.e., the parsing of IDL files to produce skeleton code).

7. Conclusion

Liveness is a fundamental part of the behavior of a distributed object system. We
have described an enriched CORBA IDL that allows object designers to include liveness
properties (and abstract state) in the interface declarations of distributed objects. The
cidl tool uses this extension to generate a testing harness for tracking possible violations
of specified liveness properties.

Our approach has the same fundamental limitation as any testing strategy: Testing can
never be used to show the correctness of an implementation, only the presence of errors. The
same is true of cidl, which can never be used to estrablish that a particular implementation
will always satisfy a given transient property. Despite this limitation, testing is a vital part
of the software development cycle because it is a practical method to increase confidence
in the correctness of an implementation.

Beyond this fundamental limitation of software testing, the testing of liveness properties
is further frustrated by the very nature of these properties: A liveness property cannot



be violated by a finite trace. The cidl tool, therefore, can only be used to detect the
potential violation of a liveness property. The accuracy of this detection relies on the
developer’s intuition about how quickly a particular transient property is expected to
hold. If transience occurs more slowly than expected, spurious violations will be reported.
In practice, however, developers often have a reasonable intuition on this matter and will
use this tool with conservative estimates.
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