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Modular Verification

= Prove the correctness of an
implementation of a component using only
the specification of its environment.
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Framework Choice

= Sequential Framework = Concurrent Framework

= Assume a single thread of = Explicitly acknowledge the
execution existence of multiple,
Collection of passive concurrently executing
objects makes up the threads
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environment

Think of the environment
behavior in terms of Hoare-
style pre- and post-
conditions, weakest pre-
conditions, etc.
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Collection of active objects
makes up the environment
= Think of the environment
behavior in terms of Rely
Guarantees, Hypothesis
Conclusion, TLA,
IOAutomata, etc.

The Unification Problem

= Major issues in sequential
verification
Contract style to use

Imfpact of pointers,
references, aliasing, etc.

How to reason about

inheritance?

= Major issues in
concurrent verification

Deadlock detection and

avoidance

Choice of synchronization

(Sequential Verification Framework) primitives

Scheduling of processes

Protocol verification

1/6/2005 SAVCBS 2004 4

Modern

Systems

(Concurrent Verification Framework)
.

Our Approach

» Extend a sequential verification framework
(RESOLVE) to the domain of concurrent
systems
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Example: Mutual Exclusion

= Several clients wanting
mutually exclusive access to a
resource
= The environment for clients is
no longer passive
= Clients are aware of the
existence of other
concurrently executing clients
Mutex |n.the system ]
Clients negotiate with each
other on mutually exclusive
access to the resource.
» Clients can't use Sequential
Verification Framework
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Facilitating a Solipsistic View

= New description that simplifies semantics
for the clients
» Each client “thinks”
u it is the only thread of execution, and

= every change to the state of the environment is a
result of its own actions.

» The state of the environment never changes
spontaneously.
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Detailing Our Approach

= Separation of a concurrent access component
into a proxy component and a core component
= Proxy component presents a sequential interface to

the clients of a concurrent access component
= How to abstract the inherent concurrency in a sequential
spec (of Proxy)?
= Solution: Use relational specification
= How to ensure that the system behavior remains the same?

= Solution: A special relation between the Proxy and the Core —
“hides concurrency inherent in”
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Illustration of Our Approach

Mutex_Core
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Abstracting the Concurrency

Relational Specification

= procedure Request()
= A counter, wait_index, is
initialized to some natural
number value that cannot be
observed
= procedure
Check_If_Available(ans)
= Every call results in a decrease
of wait_index by a positive
amount.
= The client gets access to the
resource when wait_index hits 0.
Clients can reason about their
progress using a sequential
verification framework.
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Specifying Client Obligations

» What happens if some client does not relinquish
the resource (by calling Release())?
» The progress of all waiting clients is jeopardized

= Solution

= Introduce a new “expects” clause
» It encodes the obligations a client has towards its
environment.
= The obligations are picked up while calling some operations.
» The mathematical structure for the “expects” is a set of
method calls that the client promises to make in future.
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Illustrating the “expects” Clause

= A client must release the resource.
= procedure Request()

= expects
= self.Release()
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Summarizing the Contributions

» Goal : To present a sequential interface to
the clients of a concurrent-access
component
» Extract a sequential “proxy” specification from

a concurrent-access component

» Use relational specifications to abstract the
effects of concurrency

» Introduce “expects”clause to formalize the
client obligations
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Benefits of Our Approach

= The effects of concurrency do not bleed through to the
client
= Client verification can be carried out using a sequential
verification framework
= Many client components are possible, all of whom benefit from
this approach
= The effects of concurrency are limited to just one
component, the proxy component
= Moreover, because of the “hides concurrency inherent
in” relation between the proxy and the core, the proof of
proxy implementation is not too complicated either

= Illustrated by the proof for Mutex_Proxy implementation in the
paper
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>

ddressing the Unification Problem

n

(Sequential Verification Framework)

(Concurrent Verification Framework)
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Open Issues

m The “expects”clause

» Its mathematical structure — multi-set, string,
or some other model instead of a set?

= Proof obligations for a non-terminating client

» Application of our approach to cooperative
concurrent systems

» Proof system for verifying the correctness
of core component implementations
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More Questions and Comments?
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