Encapsulating Concurrency as an
Approach to Unification

Santosh Kumar, Bruce W. Weide, Paolo A. G. Sivilotti
The Ohio State University
Nigamanth Sridhar
Cleveland State University
Jason O. Hallstrom
Clemson University

Scott M. Pike
Texas A&M University

Modular Verification

= Prove the correctness of an
implementation of a component using only
the specification of its environment.

1/6/2005 SAVCBS 2004 2

Framework Choice

= Sequential Framework = Concurrent Framework

= Assume a single thread of = Explicitly acknowledge the
execution existence of multiple,
Collection of passive concurrently executing
objects makes up the threads

1/6/2005

environment

Think of the environment
behavior in terms of Hoare-
style pre- and post-
conditions, weakest pre-
conditions, etc.

SAVCBS 2004

Collection of active objects
makes up the environment
= Think of the environment
behavior in terms of Rely
Guarantees, Hypothesis
Conclusion, TLA,
IOAutomata, etc.

The Unification Problem

= Major issues in sequential
verification
Contract style to use

Imfpact of pointers,
references, aliasing, etc.

How to reason about

inheritance?

= Major issues in
concurrent verification

Deadlock detection and

avoidance

Choice of synchronization

(Sequential Verification Framework) primitives

Scheduling of processes

Protocol verification

1/6/2005 SAVCBS 2004 4

Modern

Systems

(Concurrent Verification Framework)
.

Our Approach

» Extend a sequential verification framework
(RESOLVE) to the domain of concurrent
systems

1/6/2005

SAVCBS 2004

Example: Mutual Exclusion

= Several clients wanting
mutually exclusive access to a
resource
= The environment for clients is
no longer passive
= Clients are aware of the
existence of other
concurrently executing clients
Mutex |n.the system ]
Clients negotiate with each
other on mutually exclusive
access to the resource.
» Clients can't use Sequential
Verification Framework

1/6/2005 SAVCBS 2004 6




Facilitating a Solipsistic View

= New description that simplifies semantics
for the clients
» Each client “thinks”
u it is the only thread of execution, and

= every change to the state of the environment is a
result of its own actions.

» The state of the environment never changes
spontaneously.

1/6/2005 SAVCBS 2004 7

Detailing Our Approach

= Separation of a concurrent access component
into a proxy component and a core component
= Proxy component presents a sequential interface to

the clients of a concurrent access component
= How to abstract the inherent concurrency in a sequential
spec (of Proxy)?
= Solution: Use relational specification
= How to ensure that the system behavior remains the same?

= Solution: A special relation between the Proxy and the Core —
“hides concurrency inherent in”

1/6/2005 SAVCBS 2004 8

Illustration of Our Approach

Mutex_Core
1/6/2005 SAVCBS 2004 9

Abstracting the Concurrency

Relational Specification

= procedure Request()
= A counter, wait_index, is
initialized to some natural
number value that cannot be
observed
= procedure
Check_If_Available(ans)
= Every call results in a decrease
of wait_index by a positive
amount.
= The client gets access to the
resource when wait_index hits 0.
Clients can reason about their
progress using a sequential
verification framework.

1/6/2005 SAVCBS 2004 10

Specifying Client Obligations

» What happens if some client does not relinquish
the resource (by calling Release())?
» The progress of all waiting clients is jeopardized

= Solution

= Introduce a new “expects” clause
» It encodes the obligations a client has towards its
environment.
= The obligations are picked up while calling some operations.
» The mathematical structure for the “expects” is a set of
method calls that the client promises to make in future.

1/6/2005 SAVCBS 2004 11

Illustrating the “expects” Clause

= A client must release the resource.
= procedure Request()

= expects
= self.Release()

1/6/2005 SAVCBS 2004 12




Summarizing the Contributions

» Goal : To present a sequential interface to
the clients of a concurrent-access
component
» Extract a sequential “proxy” specification from

a concurrent-access component

» Use relational specifications to abstract the
effects of concurrency

» Introduce “expects”clause to formalize the
client obligations

1/6/2005 SAVCBS 2004 13

Benefits of Our Approach

= The effects of concurrency do not bleed through to the
client
= Client verification can be carried out using a sequential
verification framework
= Many client components are possible, all of whom benefit from
this approach
= The effects of concurrency are limited to just one
component, the proxy component
= Moreover, because of the “hides concurrency inherent
in” relation between the proxy and the core, the proof of
proxy implementation is not too complicated either

= Illustrated by the proof for Mutex_Proxy implementation in the
paper

1/6/2005 SAVCBS 2004 14

>

ddressing the Unification Problem

n

(Sequential Verification Framework)

(Concurrent Verification Framework)

1/6/2005 SAVCBS 2004 15

Open Issues

m The “expects”clause

» Its mathematical structure — multi-set, string,
or some other model instead of a set?

= Proof obligations for a non-terminating client

» Application of our approach to cooperative
concurrent systems

» Proof system for verifying the correctness
of core component implementations

1/6/2005 SAVCBS 2004 16

More Questions and Comments?

1/6/2005 SAVCBS 2004 17




