Dining Philosopherswith Crash Locality 1

Scott M. Pike
The Ohio State University
Columbus, OH 43210, USA
pike@cis.ohio-state.edu

Abstract

Ideally, distributed algorithms isolate the side-effects of faults
within local neighborhoods of impact. Failure locality quanti-
£es this concept as the maximum radius of impact caused by
a given fault. We present new locality results for the dining
philosophers problem subject to crash failures. The optimal
crash locality for dining is 0 in synchronous networks, but
degrades to 2 in asynchronous networks. Using the eventually-
perfect failure detector &P, we construct the £rst known din-
ing algorithms with crash locality 1 under partial synchrony.
These algorithms close the failure-locality complexity gap and
improve the crash tolerance of resource allocation algorithms
in practical networks. We prove the optimality of our results
with two fundamental theorems. First, no dining solution using
P achieves locality 0. Second, P is the weakest failure
detector in the Chandra-Toueg hierarchy to realize locality 1.

1. A Complexity Gap for Crash Locality?

Masking fault tolerance guarantees that a system satisfes
its specifcation, even in the presence of certain faults. Unfor-
tunately, masking tolerance can be prohibitively expensive or
simply impossible. An alternative approach is to quarantine
faults by restricting their negative side-effects to small, local
neighborhoods of impact. Failure locality measures impact as
the radius of the worst-case set of processes disrupted by a
given fault [1]. The locality radius of a distributed algorithm
demarcates a halo outside of which faults are masked. As such,
failure locality is a metric that quantifes masking tolerance,
where classical masking corresponds to failure locality 0.

Dining philosophers is a fundamental problem in distributed
resource allocation. Originally proposed by Dijkstra for a ring
topology [2], dining was later generalized to arbitrary congict
graphs by Lynch [3]. Dining solutions are a basic build-
ing block for higher-order synchronization problems such as
drinking philosophers [4], job-scheduling [5], and committee
coordination [6]. Dining has also been a canonical problem for
research on crash-failure locality. For asynchronous systems,
it is known that 2 is a lower bound on the failure locality
of dining algorithms subject to crash faults [1]. This bound
is tight, as several existing algorithms achieve it [7]-[10]. By
contrast, crash locality O is possible in synchronous systems,
because standard time-out mechanisms can reliably distinguish
crashed processes from ones that are merely slow.

Paolo A. G. Sivilotti
The Ohio State University
Columbus, OH 43210, USA
paol o@cis.ohio-state.edu

This complexity gap merits investigation for at least three
reasons. First, there is a theoretical question whether this is
truly a gap in complexity, or simply a gap in our knowledge
of fault localization. Second, many real systems are best
modeled by intermediate degrees of partial synchrony [11],
[12], which, although weaker than pure synchrony, nonetheless
satisfy stronger timing properties than outright asynchrony.
As a practical matter, can we improve fault localization in
such systems? Third, since failure locality denotes a radius,
the cardinality of the worst-case neighborhood of impact is
exponential in this value. Thus, for a failure-local-k algorithm,
a single crashed process may disrupt as many as §* other
nodes, where ¢ is the maximum degree of the conwzict graph.
The upshot is that even small improvements in failure locality
translate into dramatic improvements in crash tolerance.

This paper addresses the foregoing questions by proposing a
general technique for constructing dining algorithms with im-
proved crash-failure localization. Our approach is based on a
concept of skepticism that can be implemented using unreliable
failure detectors from the class &P . The eventually perfect
failure detectors in this class have known implementations in
several practical models of partial synchrony [12]-[14]. Our
main result is a suite of dining algorithms that use skepticism
to tolerate process crashes with failure locality 1. We illustrate
the generality of this approach by transforming three charac-
teristically diverse dining algorithms into augmented solutions
with crash locality 1.

To our knowledge, these algorithms are the £rst to achieve
failure locality 1 for dining algorithms subject to crash failures
in non-synchronous networks. Our result reduces the cardinal-
ity of the worst-case neighborhood of impact from quadratic
to linear in §. We also provide two theoretical results. First,
we prove that &P s insufEcient for tolerating crashes with
failure locality 0. Consequently, our algorithms achieve a tight
lower bound on failure localization with respect to <OP.
Second, we prove that &P is the weakest class of failure
detectors in the classic Chandra-Toueg hierarchy [13] capable
of realizing failure locality 1. Thus, using <P to implement
skepticism was also a necessary assumption.

The remainder of this paper is organized as follows. Sec-
tion 2 defnes the background and transformational strategy
of the paper. Sections 3-5 illustrate transformations of the
following dining algorithms: asynchronous doorways [1]; hi-
erarchical resource allocation [3]; hygienic [6]. Sections 6-8
prove impossibility results for crash-local-1 dining with &P .

2. Background and Transformation Strategy

This section defnes the terms and concepts used in our
transformations. We defer the formal framework required for
the impossibility theorems to Section 6.

Computational M odel. We consider asynchronous systems
where message delay, clock drift, and relative process speeds
are unbounded. A system is modeled by a set of n distributed
processes II = {p1,p2,...,pn} that communicate only by
asynchronous message passing. Every pair of processes in
the communication graph is connected by a reliable channel,
such that every message sent to a correct process is eventually
received by that process, and messages are neither duplicated,
lost, nor corrupted. Processes may fail only by crashing. A
process cannot crash at will, but only as the result of a crash
fault, which occurs when a process ceases execution (without
warning) and remains permanently crashed thereafter [15].

Dining Philosophers. A dining instance is modeled by
an undirected conmict graph DP = (II, E), where each
vertex p € II represents a diner, and each edge (p,q) € E
represents a potential resource congict between diners p and
q . Adjacent diners are called neighbors and are modeled by
a neighbor relation N C V x V such that N(p,q) iff
(p,q) € E . Furthermore, each diner is in one of three states:
thinking, hungry, or eating. Diners control their transitions
from thinking to hungry, and from eating back to thinking.
Thinking may last inde£nitely, but eating durations must be
£nite. Hungry neighbors are said to be in conwict, because
both are vying for shared (but mutually exclusive) resources.
A correct dining algorithm is a conrict-resolution strategy to
schedule diner transitions from hungry to eating, subject to:

Safety: Live neighbors never eat simultaneously.
Progress. Every hungry process eventually eats.

The safety property is weaker than strict mutual exclusion.
Specifcally, a process may eat simultaneously with crashed
neighbors [16]. This decision is motivated by considering re-
sources that are either stateless (such as transmission frequen-
cies) or recoverable (such as by checkpointing or atomic trans-
actions). By contrast, strict mutual exclusion forbids neighbors
from eating simultaneously whatsoever. Strict exclusion better
models corruptible resources. For example, a stateful resource
may be rendered unusable if left in an inconsistent state by a
crashing diner. This paper does not consider strict exclusion,
because (fundamentally) it is less interesting in the context
of fault localization; to wit, strict exclusion makes the lower
bound on crash locality 1 by defnition, so differences in
failure-detection capabilities become less meaningful.

Tolerance Metric. Failure locality measures the robustness
of a distributed algorithm in the presence of faults, which,
for this paper, we restrict to process crashes. Accordingly,
we will use the terms failure locality and crash locality
interchangeably. Previous work on crash locality considered
only token-based algorithms for which fail-safety (i.e., mutual
exclusion in the presence of crashes) is often trivial [7]-[10].
Accordingly, we restrict our attention to progress violations

(i.e., processes that starve as the result of a crash fault). The k-
neighborhood of a process p is the set of processes reachable
by at most & hops from p in the conzict graph. A dining
algorithm is said to have crash locality k if the worst-case set
of processes that starve (as the result of a crashed process p)
is a subset of the k -neighborhood of p. Equivalently, every
process g beyond the k£ -neighborhood of a crashed process
p will continue to satisfy its safety and progress speci£cation.

Impossibility Results. Our goal in the £rst half of this paper
is to construct failure-local-1 (FL£;) dining algorithms. This
requirement re£nes the original progress property so that (even
in the presence of crashes) hungry processes must eventually
eat if no process in their 1-neighborhood crashes:

F L,-Progress; Every hungry process eventually eats or has
a crashed process in its 1-neighborhood (possibly itself).

Even though hungry neighbors of a crashed process are
permitted to starve, FL; dining cannot be implemented in
asynchronous systems subject to even a single crash fault.
This impossibility result is a corollary of the fact that 2 is the
optimal crash locality for dining in asynchronous systems [1].
Wait-for dependencies can form when a hungry neighbor of a
crashed diner is unable to make progress, but is also uncertain
whether it can safely yield priority to other hungry neigh-
bors without precipitating its own starvation. As wait-chains
extend throughout the conrict graph, resource utilization and
concurrency degrade and widespread starvation can ensue. For
intolerant algorithms, a single crash failure can potentially
cascade into global starvation, a fact that underscores the
importance of improved techniques for fault-localization.

Failure Detectors. To circumvent the impossibility results,
we augment the asynchronous model of computation with an
eventually perfect failure detector P (“diamond P”). An
unreliable failure detector [13] can be viewed as a distributed
oracle that can be queried for (possibly incorrect) information
about crashes in II. Each process has access to its own local
detector module that outputs the set of processes currently
suspected of having crashed. Unreliable failure detectors are
characterized by the kinds of mistakes they can make. Mistakes
can include false-negatives (i.e., not suspecting a crashed
process), as well as false-positives (i.e., wrongfully suspecting
a correct process). Unreliable detectors from the class OP
are characterized by the following properties [13]:

Strong Completeness: Every crashed process is eventually
and permanently suspected by every correct process.

Eventual Strong Accuracy: For each run, there exists a time
after which no correct process is wrongfully suspected
by any other correct process.

Failure detectors in &P may commit an arbitrary (but £nite)
number of false-positive mistakes during the computational
pre£x of any run. After some point, however, &P detectors
converge to being well-founded, after which they provide
reliable information about crashes. Unfortunately, the time to
convergence is not known, and it may vary from run to run.

Transformation Strategy: We say that a &P detector is
well-founded once it converges to strong accuracy. Since con-
vergence occurs after some £nite pre£x, the detector remains
well-founded for an infnite computational sufEx thereafter.
Furthermore, we say that a process p is skeptical if some
process in p’s 1l-neighborhood is suspected by p’s local
detection module. If a process p becomes hungry, but does not
proceed to eating for a suffciently long time, then eventually
p will still be hungry and its failure detector will have become
well-founded. Thereafter, if its neighbors never crash, p will
never become skeptical and so must be permitted to eat,
eventually. Alternatively, if some neighbor of p crashes, then
(by strong completeness) p’s detector module will suspect
that neighbor, and p will eventually become permanently
skeptical. Thereafter, p is not required to eat under FL;.
These observations yield the following proof obligation for
establishing the progress of FL£; dining algorithms:

Proof Obligation for FL;-Progress: Every hungry process
eventually eats or becomes permanently skeptical.

Many asynchronous dining algorithms can be transformed
into FL; algorithms by using &P to implement skepticism.
Achieving FL; requires neighbors of a crashed process to
isolate other neighbors from the effects of the crash. Using
skepticism as a local proxy for crashing neighbors, we get the
following principle: Skeptical philosophers should not prevent
their neighbors from eating.

The actions to execute while skeptical will, of course,
depend on the algorithm being transformed. As a general
guide, however, note that in most non-degenerate algorithms, a
thinking process never prevents a neighbor from eating. Thus,
a skeptical process could protect its neighbors by behaving
like a thinking process. This general heuristic must be applied
with care. Specifcally, it is not always possible to just “cleanly
release” all acquired permissions and resources. In many
dining algorithms, the transition to thinking occurs only from
the eating state. Thus, establishing the conditions necessary to
behave like a thinking process may be predicated on having
£rst established the conditions required to be eating. Since a
process can (potentially) become skeptical in any state, it may
not always be possible to satisfy the invariant that characterizes
a thinking process. As we will show, in such cases, a weaker
(but reachable) invariant may sufce.

The transformations in the following sections are based
on the following algorithms: Section 3 transforms the Asyn-
chronous Doorway Algorithm by Choy and Singh [1]; Sec-
tion 4 transforms the Hierarchical Resource Allocation algo-
rithm by Lynch [3]; and Section 5 transforms the Hygienic Al-
gorithm by Chandy and Misra [6]. These candidates were cho-
sen primarily for their diversity as doorway-based, permission-
based, and token-based dining algorithms, respectively.

3. Asynchronous Doorway Algorithm

The Asynchronous Doorway Algorithm (ADA) is due to
Choy and Singh, who were the £rst to consider the failure
locality of dining algorithms [1]. AD A was the £rst of several

algorithms constructed by Choy and Singh using various
doorway mechanisms to ensure progress and improve failure
locality. For an in-depth description of ADA and its proof of
correctness, we refer the reader to the original papers [1], [7].

3.1. Original Algorithm (Synopsis)

In ADA, diners are assumed to have a static total ordering
on process IDs. As an optimization, a partial order is sufEcient,
provided each diner’s ID is distinct from each of its neighbors.
Standard node-coloring algorithms can compute such order-
ings, which, in the worst case, require as many as 6 + 1
distinct IDs (where ¢ is the maximum degree of the conmict
graph). A process shares a fork with each neighbor and it must
hold all shared forks to eat. Conrict resolutions are always
resolved (statically) in favor of the diner with the higher ID. To
prevent higher-priority processes from starving lower-priority
neighbors, ADA uses an asynchronous doorway to prevent
unbounded over-taking. See Fig. 1 for reference.

Inside doorway
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘
| |

I

Request | Conflict Satisfy }

permission l resolution deferred ‘

to enter | code requests !
I

| I

| I

Figure 1. Asynchronous doorway algorithm.

Thinking processes are always outside the doorway. A
process can only eat if it is inside the doorway and it holds
all of its forks. Thus, upon becoming hungry, a process must
eventually enter the doorway and then collect all of its forks.
ADA accomplishes this in two phases.

Phase 1: Upon becoming hungry, a process £rst requests
permission from all of its neighbors to enter the doorway.
Any neighbor also outside the doorway grants this permission
without delay. Neighbors inside the doorway, however, defer
granting permission until after they proceed to (and £nish)
eating. This mechanism prevents unbounded over-taking, be-
cause higher-priority neighbors cannot re-enter the doorway
until lower-priority neighbors already inside the doorway have
exited. Once a hungry process receives permissions from all
neighbors, it proceeds inside the doorway to Phase 2.

Phase 2: Once a hungry process is inside the doorway, it
requests all missing forks. Neighbors still outside the doorway
(whether thinking or hungry) yield their forks without delay.
Hungry neighbors inside the doorway yield their forks based
on process ID; lower IDs yield the fork immediately (and re-
request it), but higher IDs defer the fork request until after
they proceed to (and £nish) eating. Eating neighbors also defer
fork requests until they £nish eating, after which they exit the
doorway and grant all deferred permissions and fork requests
(thereby enabling hungry neighbors to make progress).

Correctness. Safety is guaranteed because a process eats
only if it holds all of its forks, and no two neighbors can hold
the shared fork simultaneously. Progress is achieved in two

stages. First, hungry diners inside the doorway eventually eat.
This is because higher priority neighbors eventually exit the
doorway and are not permitted back in. Second, hungry diners
outside the doorway eventually enter. Similarly, this is because
every neighbor eventually exits the doorway, at which point
all deferred permissions are granted.

3.2. Transformation

ADA has crash locality 6 +2 (see [1] for details). Infor-
mally, this is because permissions are granted asynchronously.
In the worst-case, the conaict graph requires § + 1 distinct
process IDs. It is possible for 6 +1 hungry processes to enter
the doorway simultaneously if all receive their £nal permission
at once. If the highest priority process then crashes while
inside the doorway, starvation may cascade down the entire
chain of § + 1 processes, plus an additional process waiting
outside the doorway for a permission that will never arrive.

Wait-chains originate with crashed processes inside the
doorway. High-priority neighbors executing Phase 2 extend
such chains by deferring permissions and fork requests. By
contrast, thinking processes and hungry processes outside the
doorway (executing Phase 1) always grant permissions and
forks without delay. Thus, we can transform ADA into an
F L, algorithm simply by having skeptical hungry processes
behave like thinking processes. Speci£cally, such processes
inside the doorway should abort Phase 2 by granting all
deferred requests and exiting. Once outside the doorway, a
skeptical process should continue granting permissions and
forks to any requesting neighbors (just as a thinking process
would). The strong completeness of &P guarantees that every
neighbor of a crashed process eventually becomes permanently
skeptical, so the transformed algorithm is FL; because
nobody else waits on a skeptical process.

If a hungry process p becomes skeptical, its progress may
be stalled by exiting the doorway. To witness progress, we
consider two cases. First, if p’s skepticism is well-founded,
then some neighbor will or has crashed; since FL£; dining
does not require p to eat with a crashed neighbor, it’s permis-
sible for p to remain permanently skeptical and never eat. In
case two, p’s skepticism may not be well-founded, but instead
was the result of some false-positive suspicion committed by
OP. If p ceases to be skeptical in the future, it can safely
resume being hungry by starting over with Phase 1. Since &P
makes only £nitely many mistakes before converging to strong
accuracy, p will either continue to Phase 2 and eventually eat,
or a neighbor will crash and return us to case 1. Either way,
p eventually eats or becomes permanently skeptical.

4. Hierarchical Resource Allocation

The Hierarchical Resource Allocation algorithm (HRA)
by Lynch is described in [3] and [17]. HRA is so-named be-
cause every resource in the system is totally ordered according
to some static, hierarchical ranking. Like the total ordering on
process IDs in AD A , this condition can be relaxed to a partial
order, provided that it projects a total order on the individual
resource requirements of each diner.

4.1. Original Algorithm (Synopsis)

Each resource in the system has an associated FIFO queue
of process IDs which is shared among all diners requiring that
resource. Being the process ID at the head of a queue implies
holding the “fork™ for the associated resource. Upon becoming
hungry, a diner requests its required resources, one at a time, in
rank order from least to greatest. To accomplish this, a hungry
diner enqueues its process ID onto the queue associated with
the lowest-ranked resource in its required resource set. The
diner waits until it gets to the head of the current queue, after
which it enqueues its process ID into the queue of its next-
lowest resource. A process eats only once it gets to the head
of every queue in its resource set (i.e., once it has obtained
all of its forks). After eating, a process dequeues its ID from
every queue in its resource set.

Correctness. HRA implements mutual exclusion because
a process only eats if it holds all of its forks. At most one pro-
cess can hold the fork for any given resource, so neighboring
processes cannot eat simultaneously. Furthermore, progress is
guaranteed because the policy of requesting resources in rank-
order prevents request cycles from forming among the diners.
For details of this proof, we refer the reader to [3] and [17].

4.2. Transformation

In ADA, a skeptical hungry process could curtail wait-
chains simply by behaving like a thinking process. Following
suit, what invariant de£nes the behavior of thinking processes
in HRA? One property is that the ID of a thinking process is
never in any queue. Unfortunately, this condition is too strong
to satisfy (uniformly) by every skeptical process. Still, this
approach is instructive to consider as a point of analysis.

Upon becoming skeptical, a hungry diner is at the head of
zero or more queues. These queues correspond to the resources
for which the process already holds forks. To break wait-
chains, a skeptical diner should clearly dequeue its ID from
all such queues. Beyond this, however, a skeptical hungry
process is potentially in at most one more queue, still waiting
to get to the head. If the process ever gets to the head, it can
dequeue its ID to satisfy the invariant of a thinking process
(stated above). Progress, however, is not guaranteed, because
the skeptical process may be suspecting a neighbor that has
actually crashed, and whose ID is currently farther ahead in
this same queue. In this case, the ID of the skeptical process
will be stuck in the resource queue, never to be removed.

As it turns out, this unbreakable dependency is only the
appearance of a problem. Any diner waiting in the same queue
as a crashed process is already an immediate neighbor of that
process, so progress is not required under FL£; dining. Our
original invariant was too strong, but a weaker (and reachable)
invariant will sufEce: A thinking process is never at the head
of any queue. This condition can be satisfed locally by any
skeptical diner. The only wrinkle is that if a hungry diner
ceases to be skeptical (due to false-positive suspicion), it must
wait until its ID has been removed from all resource queues
before restarting the hierarchical queuing scheme. Otherwise,
cycles may form among the request queues.

5. Hygienic Dining Philosophers

The hygienic algorithm is by Chandy and Misra [4]. The
hygienic algorithm uses process priorities to break symmetries
in resolving conricts. The algorithm derives its name from
the mechanism used to encode the relative priority between
neighbors: their shared fork is either clean or dirty. In the
hygienic algorithm (where only “clean” forks are exchanged),
process priorities are dynamic, because processes lower their
priority below their neighbors after eating.

5.1. Original Algorithm (Synopsis)

A fork is associated with each edge of the conzict graph.
Upon becoming hungry, a diner requests all missing forks.
Diners relinquish forks only if the request comes from a higher
priority neighbor, otherwise the request is deferred. Priority is
encoded in the state of the fork: clean or dirty. If a diner
holds a clean fork, it has higher priority than the requesting
neighbor. If a process holds a dirty fork, it has lower priority
than that neighbor. Thus, requests for dirty forks are granted
while requests for clean forks are deferred. After eating, all
forks become dirty and all deferred requests are satis£ed.

Become hungry —
if hold all forks, begin eating
else request all missing forks
Receive fork —
aip state of fork (clean/dirty)
if hold all forks, begin eating
Receive request —
if fork is dirty and not eating
send fork and, if hungry, re-request
else defer request
Done eating —
all forks become dirty
satisfy deferred fork requests

Figure 2. Original Hygienic Algorithm

Correctness. Safety is ensured because eating diners must
hold every shared fork. To ensure progress, priorities are
initially assigned so as to form an acyclic graph, i.e., a partial
order. This graph is modifed only by a diner eating and then
lowering its priority below all its neighbors. This modifcation
preserves the acyclicity of the graph. Since a diner only lowers
its priority when it eats, a hungry diner either eats or rises in
the partial order. Since the partial order is £nite, a hungry diner
eventually eats. Proof details can be found in [4] and [6].

5.2. Transformation

The crash locality of hygienic dining is the diameter of
the conwmict graph (global). If an eating process crashes at the
top of the partial order, its lower priority hungry neighbors
will never receive their requested fork. These neighbors, in
turn, will not relinquish (clean) forks to their lower priority
neighbors. Process priorities are dynamic, so remote processes
will eventually fall under the wait-chain too once their priority
reduces after sufEciently many eating sessions.

To create an FL; algorithm, we observe that thinking
processes always satisfy fork requests without delay, and
hence, no process waits on a thinking neighbor. This property
is also true of any diner whose priority is lowest among all
its neighbors. Thus, a skeptical diner can break wait-chains by
lowering its priority below that of all (non-skeptical) neigh-
bors. That is, a skeptical diner relinquishes forks (whether
clean or dirty) to any hungry, non-skeptical neighbor. The
new algorithm (summarized in Fig. 3) is augmented with
actions for transitions into and out of skepticism. The action
for receiving a request also relinquishes the fork if skeptical.

Become hungry —
if hold all forks, begin eating
else request all missing forks
Receive fork —
aip state of fork (clean/dirty)
if hold all forks, begin eating
Receive request —
if fork is dirty and not eating
send fork and, if hungry, re-request
else if skeptical and not eating
send fork
else defer request
Become skeptical —
if not eating,
satisfy deferred fork requests
Stop being skeptical —
if hungry,
if hold all forks, begin eating
else request all missing forks
Done eating —
all forks become dirty
satisfy deferred fork requests

Figure 3. Transformed Hygienic Algorithm

The correctness of this algorithm derives from the fact that
the transformed priority scheme is still acyclic. Since every
skeptical process has lower priority than any non-skeptical
process, a cycle in priority (if one exists) cannot contain
both kinds of processes. Among processes of the same kind,
however, priority is determined by the state of the forks as in
the original algorithm, which is guaranteed to be acyclic.

Unlike the original hygienic algorithm, a hungry diner
can lower its priority in two ways without eating: (1) by
becoming skeptical or (2) by having a neighbor become non-
skeptical. After the detector becomes well-founded, a diner
who becomes skeptical will eventually become permanently
skeptical. Similarly, a skeptical neighbor may only become
non-skeptical for a £nite period of time (and this only occurs
when the detector is well-founded and suspects a process that
will crash, but hasn’t crashed yet). Either way, priority will
reduce under these two conditions only a £nite number of
times. In the inEnite sufEx thereafter, a hungry process will rise
in the partial order and eat, or become permanently skeptical.
Thus, FL, progress is satisEed.

6. Complexity Questions for FL£; Dining

Having shown that FL£; dining is possible using &P, it
is important to place the meaning of this result in context. The
simplicity of the foregoing transformations might suggest that
we have assumed too much by using <&P. This conjecture has
two dimensions. First, is &P suffciently strong to achieve
FLy dining? Second, is there a strictly weaker (or simply
incommensurable) failure detector that can also achieve FL; ?

If the answer to either of these questions is “yes” then
our FL, transformations using <P have only diminished
signiEcance. Sections 7 and 8 will prove two impossibility
theorems to the contrary, but £rst we pause to introduce some
formal machinery used in our proofs. For consistency with
existing literature, we adopt the model used in Chandra and
Toueg’s original formalization of failure detectors [13].

Failure Patterns. We posit a discrete global clock 7", with
the set of natural numbers IN as its range of clock ticks. 7 is
merely a conceptual device to simplify our presentation; since
T is inaccessible to processes in II, it cannot be used to
advantage in any algorithm executed by the system. A failure
pattern F' models the occurrence of crash failures in a given
run. Specifcally, F' is a function from the global time range
T to the powerset of processes 21, where F(t) denotes the
subset of processes that have crashed by time ¢ . Since crashed
processes never recover, F' is monotonically non-decreasing:
Vi1 < to : F(t1) C F(t2). We say that p crashes in F if
p € Uyer F(t); otherwise, we say that p is correct in F'.

Failure Detectors. A failure detector history is a function
H from IIx 7T to 2™, where H(p,t) is the set of processes
suspected by p’s local detector module at time ¢ . We say that
p suspects ¢ attime ¢ in history H , if process q € H(p,t).
A failure detector history may output consicting information
to different processes; thus, for p # ¢, it is possible that
H(p,t) # H(q,t). A failure detector D provides (possibly
incorrect) information about the failure pattern F' that occurs
in a given run. The unreliability of a failure detector depends
on its £delity to actual failure patterns. Formally, a failure
detector D is a function that maps each failure pattern, F, to
a set of failure detector histories, D(F'). The range of D(F)
is the set of admissible failure detector histories using failure
detector D in algorithmic runs with failure pattern F.

Algorithms. An algorithm A is a set of n deterministic
automata, one for each process in II. A run of algorithm A
using a failure detector D isa5-tuple R = (F,Hp,I,S,T),
where F is a failure pattern, Hp € D(F') is some admissible
history D on failure pattern F', I is an initial confguration,
S is an inEnite sequence of steps (or schedule) of A, and
T is an inEnite sequence of increasing time values denoting
when each step in the schedule S occurred.

Impossibility Proofs. Although an algorithm has access
to its failure detector history Hp, the actual failure pattern
of a given run is inaccessible. Since failure detectors can be
unreliable, it is possible for distinct failure patterns to yield
identical failure detector histories. A fundamental approach to
proving impossibility results is to construct two runs R and

R’ with different failure patterns and yet identical schedules
and failure detector histories along some pre£x of both runs.
Since we consider only deterministic algorithms, the next step
of the algorithm must be the same in both runs. This forces a
contradiction if the underlying failure patterns actually require
distinct behaviors in the respective futures of each run.

7. FL, Dining is Optimal for &P
In this section, we prove that &P is not powerful enough
to implement dining algorithms with crash locality 0. In

conjunction with our transformations, Theorem 1 shows that
F L, is atight lower bound for dining algorithms using OP .

Theorem 1. No deterministic asynchronous algorithm can
solve dining philosophers with crash locality 0 using OP.

Proof. Suppose such an FLy dining algorithm, A, exists.
We will force a contradiction by constructing two runs that are
indistinguishable to A along some £nite pre£x that violates
mutual exclusion. Consider the system II={p,q}, where p
and ¢ are neighbors, and where ¢ is hungry while p is eating
at some time ¢;. We extend this partial run with two possible
futures based on distinct failure patterns F' and F'.

In failure pattern F, process p crashes at some future
time t, > t; while still eating. By hypothesis, algorithm A
has crash locality 0. Thus, in an extended run R based on
failure pattern F, process ¢ must eventually be scheduled to
eat. Process ¢ cannot eat before p crashes without violating
mutual exclusion, so let ¢3 > t, denote the time when
q begins eating. By contrast, in failure pattern F’ neither
process crashes. Moreover, in an extended run R’ based on
this failure pattern, it is perfectly admissible for process p to
continue eating until some time ¢4 > ts.

Now consider possible failure detector histories H and H'
of runs R and R’, respectively. In history H, p’s detector
never suspects anyone, but ¢’s detector suspects p initially
and permanently. That is, H(p,t) = 0 and H(q,t) = {p}
forall ¢ € 7. History H’ is identical to H, except that ¢’s
detector permanently stops suspecting process p after time t,.
That is, H'(q,t) = {p} only for ¢ <t4. Itis clear that both
failure detector histories provide identical information about
their respective failure patterns prior to time ¢,.

Furthermore, H and H’ are both admissible histories of
a OP detector over failure patterns F' and F”, respectively.
To see this, note that in H, the only incorrect process, p,
is suspected permanently (strong completeness), and the only
correct process, ¢, is never suspected after time O (eventual
strong accuracy). In history H’, no process crashes (so strong
completeness is satisEed vacuously), and no correct process is
suspected after time ¢4 (eventual strong accuracy).

Recall that A does not have access to the actual failure
pattern of a given run, but only to the information provided
by its failure detector modules. We have shown that H and
H'’ are admissible histories for &P, and that both histories
provide identical information prior to time t4. Thus, even
though runs R and R’ have failure patterns that require
distinctly different behavior, these runs are indistinguishable
to algorithm A over the £nite pref£x in question.

Since A is deterministic, it executes the same actions in
both runs prior to time ¢,. Consequently, when process g
gets scheduled to eat at time ¢3 in run R (as required by
failure locality 0), ¢ must also be scheduled to eat at time ¢35
inrun R’. This action, however, violates mutual exclusion by
eating simultaneously with a live neighbor p. The assumption
that A solves FL, dining philosophers using <P has been
contradicted. Thus, no such algorithm exists.

8. The Weakest Detector for FL; Dining

In this section, we prove that &P is the weakest failure de-
tector in the Chandra-Toueg hierarchy capable of implement-
ing FL, dining algorithms. Theorem 2 establishes that &P
was actually a necessary assumption in our transformations.
The proof approach draws on the structure of the Chandra-
Toueg hierarchy, which we pause to review.

In Chandra and Toueg’s original classif£cation of unreliable
failure detectors [13], each class was defned by two proper-
ties: completeness and accuracy. Each property is either weak
or strong; additionally, accuracy is either perpetual or eventual.
Altogether, there are eight distinct classes. Four pairs of these
classes are known to be equivalent (via mutual reduction),
however, so the resulting hierarchy becomes a lattice with four
nodes, as illustrated in Fig. 4.

Px~Q

R
o penne

[
OS = OW

Figure 4. The Chandra-Toueg hierarchy consists
of four equivalence classes of failure detectors. Fail-
ure detector classes higher in the lattice are strictly
stronger than detector classes lower in the lattice.

The perfect and quasi-perfect failure detectors (P and Q)
are strongest (i.e., most reliable). The eventually strong and
eventually weak detectors (¢S and ©W) are the weakest.
The intermediate equivalence classes are incommensurable;
some problems solvable by one cannot be solved by the other,
and vice versa. These classes include the strong and weak
failure detectors (S and W), and the eventually perfect and
eventually quasi-perfect detectors (OP and <©Q).

To obtain our result, we will prove that no algorithm can
solve FL; dining using the strong failure detector S'. Since
the weak detector W is computationally equivalent to S,
no algorithm can solve FL£; dining using W either. The
impossibility result also extends down the lattice to the classes
&S and OW, since both are strictly weaker than S.

Strong Failure Detectors. S satisEes strong completeness
(just like <7P); thus, every process that crashes is eventually
and permanently suspected by every correct process. Unlike
OP, however, S satisEes only weak accuracy, which requires
that some correct process is never suspected. Thus, whereas

&P may wrongfully suspect every correct process £nitely
many times, S cannot wrongfully suspect some correct pro-
cess even once. On the other hand, &P must eventually stop
suspecting all correct processes, but S may suspect other
correct processes inEnitely often or even permanently so.

Theorem 2: &P is the weakest failure detector in the
Chandra-Toueg hierarchy suffcient for solving F£; dining.

Proof. Suppose a deterministic algorithm A solves FL;
dining using the strong failure detector S. We will force a
contradiction by constructing a malicious run where A vio-
lates F L, -Progress. Specifcally, we will prove by induction
that there exists an admissible run of A where no process
crashes and yet some hungry process never eats.

(a) Con£guration C4

(b) Con£guration Cs

Figure 5. System Con£gurations for Theorem 2

Let II = {p,q,r} be a system where ¢ is a neighbor of
both p and », but p and » are not neighbors of each other.
Consider a conf£guration C'; where ¢ and r are hungry while
process p is eating, as in Fig. 5(a). We will show that ¢
can starve in algorithm A. The proof is by induction on the
number of times (since ¢ last became hungry) that the system,
II, enters conEguration C; before ¢ eats.

Base Case: We require a partial run of A where ¢
becomes hungry, but the system reaches C; before ¢ eats.
The following schedule suffces: p becomes hungry, p begins
eating, ¢ becomes hungry, r becomes hungry. In this pre£x,
the number of times II enters C; before ¢ can eat is 1.

Inductive Step: In a given partial run, suppose process ¢
becomes hungry and that the system enters confguration C'y
at least £ times while ¢ is still waiting to eat. WWe must show
that this partial run can always be extended so that II re-visits
C; at least once more before ¢ eats.

Consider the failure detector history Hg where p and r
always suspect each other, but ¢ always suspects p and r.
That is, for all t € 7 : Hg(p,t) = {r}, Hs(r,t) = {p},
and Hg(q,t) = {p,r}. Surprisingly, Hg is an admissible
history of the strong detector S for any failure pattern of II in
which ¢ never crashes. For all such patterns, ¢ is the correct
process that is never suspected in Hg (weak accuracy). Since
p and r are suspected initially and permanently, Hg satistes
strong completeness too, regardless of when p or r crash. If
neither crashes, strong completeness holds vacuously. Under
weak accuracy, permanent suspicion does not imply failure.
Thus, the failure pattern in which no process crashes can starve
q, because every partial run is indistinguishable from a similar
partial run in which p or r have just crashed while eating.
Fig. 6 applies this observation to our inductive step.

.Cr re

b &S o ____ - R1

r.cr e
R -4 - R2

RUN : : .h : , h
_y__@ e pt P @ e rt rt @—»R
TIME tO tl t2 t3 t4 tS t6 t7 t8 t9 th
-— - —@ @ @ @ \ 4 @ \ 4 \ 4 \ 4 \ 4 *—

Figure 6. Any partial run up to C; can be extended to re-visit C; before g eats.

Let ¢q € 7 be the time at which II entered confguration
C, for the k' time while ¢ was still hungry (see Fig. 6).
The partial run prior to ¢o can be extended into two possible
futures. In extension R;, p crashes at time ¢; while eating.
By hypothesis, A is FL;, so (hungry) process r must
eventually eat in this run. Recall, however, that the failure
detector history, Hg, over this pre£x can have the same
behavior over run R where p does not crash. Thus, A must
also allow r to eat inrun R even though p has not crashed.
Once r begins eating at time ¢, process p can transit from
eating to thinking and back to hungry again. This precipitates
conEguration Co attime t¢5 (see Fig. 5(b)). Since either p or
r eats at every moment between C; and Cs, their neighbor
g remains hungry and does not eat before time ¢5.

Now the situation is reversed, with p being hungry while
r is eating, and there being two possible futures of this run:
extension R, where r crashes at time tg, and extension
R where r does not crash. FL£; dining requires that p be
allowed to eat in the former, but again, history Hg has the
same behavior in both extensions. Thus, once p begins eating
inrun R attime t¢;, r can cycle from eating to thinking
to hungry again to precipitate the original confguration C}.
As before, either p or r eats at every moment between
confgurations Cy and Cj, so, again, process ¢ remains
hungry and does not eat before time ¢;9, when the system
IT enters confguration C; for the k + 1%¢ time.

By induction, there exists a crash-free run where system II
enters confguration C; inEnitely many times before ¢ gets
to eat. This violates F L, -Progress, because ¢ is a starving
process without any crashed neighbors. Thus, our assumption
that A achieves FL£; dining using S was a contradiction.
Since no such algorithm exists, OP s, in fact, the weakest
Chandra-Toueg failure detector capable of F£; dining. ®

9. Conclusions

The contribution of this paper is two-fold. First, we close
the failure-locality complexity gap between asynchronous and
synchronous dining solutions; we show that F£; dining can
be achieved using <P . This result applies to any partially
synchronous system in which &P can be implemented [12],
[13]. Our second contribution is a general strategy for trans-
forming off-the-shelf dining solutions into F£; algorithms.
We illustrated this heuristic by applying it to three algorith-
mically diverse dining solutions.

Finally we have shown that our failure locality results are
strict in the sense that &P does not permit the construction of
dining algorithms with locality better than 1. Moreover, &P
is the weakest detector in the Chandra-Toueg hierarchy capable
of implementing crash-local-1 dining algorithms. These results
close the locality complexity gap under weak mutual exclu-
sion, and improve the crash tolerance of resource allocation
algorithms for many practical networks.

References

[1] Manhoi Choy and Ambuj K. Singh, “Effcient fault tolerant algorithms
for resource allocation in distributed systems,” in 24th ACM Symposium
on Theory of Computing, May 1992, pp. 593-602.

Edsger W. Dijkstra, “Co-operating sequential processes,” in Program-
ming Languages, F. Genuys, Ed., pp. 43-112. Academic Press, 1968.
Nancy Lynch, “Fast allocation of nearby resources in a distributed
system,” in 12th ACM Symp. on Theory of Computing, 1980, pp. 70-81.
K. Mani Chandy and Jayadev Misra, “The drinking philosopher’s
problem,” ACM Transactions on Programming Languages and Systems,
vol. 6, no. 4, pp. 632-646, Oct. 1984.

B. Awerbuch and M. Saks, “A dining philosophers algorithm with
polynomial response time,” in 31st Annual Symposium on Foundations
of Computer Science, IEEE, Ed., 1990, vol. 1, pp. 65-74.

K. Mani Chandy and Jayadev Misra, Parallel Program Design: A
Foundation, Addison-Wesley, Reading, MA, USA, 1988.

Manhoi Choy and Ambuj K. Singh, “Ef£cient fault-tolerance algorithms
for distributed resource allocation,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 17, no. 3, pp. 535-559, 1995.
Yih-Kuen Tsay and Rajive L. Bagrodia, “An algorithm with optimal
failure locality for the dining philosophers problem,” in 8th International
Workshop on Distributed Algorithms, WDAG 94, Gerard Tel and Paul
M. B. Vitanyi, Eds. 1994, vol. 857 of LNCS pp. 296-310, Springer.
Paolo A. G. Sivilotti, Scott M. Pike, and Nigamanth Sridhar, “A new
distributed resource-allocation algorithm with optimal failure locality,”
in Proceedings of the 12th Int'| Conference on Parallel and Distributed
Computing and Systems (PDCS), Nov 2000, vol. 2, pp. 524-529.
Mikhail Nesterenko and Anish Arora, “Dining philosophers that tolerate
malicious crashes,” in 22nd Int’l Conference on Distributed Computing
Systems, 2002, pp. 172-179.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer, “On the minimal
synchronism needed for distributed consensus,” Journal of the ACM
(JACM), vol. 34, no. 1, pp. 77-97, 1987.

Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer, “Consensus
in the presence of partial synchrony,” J. Assoc. Comput. Mach., vol. 35,
no. 2, pp. 288-323, Apr. 1988.

Tushar Deepak Chandra and Sam Toueg, “Unreliable failure detectors
for reliable distributed systems,” Journal of the ACM, vol. 43, no. 2,
pp. 225-267, 1996.

C. Fetzer, M. Raynal, and F. Tronel, “An adaptive failure detection
protocol,” in Pacifc Rim International Symposium on Dependable
Computing, 2001, pp. 146-153.

Flavin Cristian, “Understanding fault-tolerant distributed systems,”
Communications of the ACM, vol. 34, no. 2, pp. 56-78, 1991.

Mikhail Nesterenko, Personal Correspondence, 2003.

Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[2]
[3]
[4]

[5]

(6]
[7]

(8]

[°]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

