
Remote Belief: Preserving Volition for Loosely Coupled Processes

Nuh Aydin
Department of Mathematics

Kenyon College
Gambier, OH USA 43022-9623

aydinn@kenyon.edu

Paolo A. G. Sivilotti
Department of Computer and Information Science

The Ohio State University
Columbus, OH USA 43210-1277

paolo@cis.ohio-state.edu

Abstract

Knowledge has proven to be a useful and fundamental
formalism for reasoning about distributed systems. The ap-
plication of this formalism, however, entails a loss of vo-
lition on the part of processes about which something is
known. This loss of volition is often not appropriate in
loosely coupled distributed systems. In this paper, we gen-
eralize the formal characterization of knowledge into one
of belief. Belief has the advantage of allowing processes to
maintain volition. We examine some of the similarities and
surprising differences between knowledge and belief. We
also present some examples of distributed applications that
are more conveniently characterized with belief rather than
knowledge.

1. Introduction

The general concepts of knowledge and belief have re-
ceived considerable attention in such diverse fields as phi-
losophy [12], artificial intelligence [6, 15] game theory
[1], economics [17], linguistics [3], and computer science
[2, 11, 5]. Although the models and contexts are not always
the same, there are considerable similarities among them.
A survey by Halpern [9] describes some of the common
threads in the area of knowledge in various fields. In the
context of distributed systems, knowledge has been defined
in terms of isomorphisms of computations with respect to
processes [2], in terms of global and local states being in-
distinguishable with respect to an agent [6], and in terms of
equivalence of scenarios [13, 10].
A fundamental result in the application of knowledge to
distributed systems is that a process can only gain knowl-
edge about remote predicates by receiving a message and
conversely can only lose knowledge by sending a message.
That is, if a process

�
knows something about the state of

a remote process � , � can only change that part of its state
if
�

sends a message. � has lost volition, that is, the auton-

omy to change this part of its local state. This loss of au-
tonomy, however, may be too strict a requirement for some
distributed applications (e.g., ad hoc networks) or some as-
pects of local state (e.g., failure modes which are controlled
by the environment).

In this paper, we generalize the characterization of
knowledge in distributed systems into one of belief. This
new formalism is based on isomorphisms of system com-
putations. Unlike knowledge, belief allows processes to
maintain autonomy in the control of their local state. Be-
lief about remote predicates can be gained or lost by either
sending or receiving messages or by internal events.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the formal definition of knowledge and
the fundamental theorems for its application to distributed
systems. In Section 3, we formally define the notion of
belief and establish knowledge as a special case. We then
investigate some similarities and surprising differences be-
tween the two concepts. Sections 4 and 5 give the basic
theorems for working with belief and describe how it can be
gained, lost, and transferred. We illustrate the application of
belief by examining two common constructs in distributed
systems: directory services and asynchronous leases. Both
constructs are more suitably characterized in terms of belief
rather than knowledge. Section 7 concludes and indicates
directions for future work.

2. Background: Knowledge in Distributed Sys-
tems

2.1. Computations

An event on a process is either a send, a receive, or an in-
ternal event. A process computation is a finite sequence of
events on that process. A process is characterized by a set of
process computations. This set is prefix closed. Let � be any
sequence of events in a distributed system. The projection
of � on a component process � , denoted by ��� , is the subse-
quence of � consisting of all events on � . A finite sequence

of events � is a system computation of a distributed system
if: (i) for all processes � , � � is a process computation, and
(ii) for every receive event in � , there is the corresponding
send event in � .

System computations are also prefix closed. The set of
all system computations is denoted by

�
, while a particu-

lar system computation is denoted by � , � , or � . The con-
catenation of two sequences � and � is written ����� �	� . For
sequences � and � , ��
 � denotes that � is a prefix of � ;
in that case ����
 �	� denotes the suffix of � obtained by re-
moving � from � . The set of all processes in the system is
denoted by � and for any process set

�
, ���� ��� �

. For a
predicate � defined on

�
, � at � denotes its value for com-

putation � . We assume that all predicates are total and we
assume that for a given system there are only finitely many
possible events on any of the processes.

2.2. Isomorphism and Knowledge

For a process � , the relation � ��� on the set of all system
computations is defined as follows.

Definition 2.1. For ��
���� �
, ��� ����� if � � � � � .

In words, two computations � and � are isomorphic with
respect to � if � ’s computation is the same in � and � . That
is, the computations � and � cannot be distinguished by � .

In general, for a process set
�

, the relation � � � is defined
as

Definition 2.2. For ��
 ��� �
, ��� � �!� if for all �"� �

, ��� ����� .

That is, ��� � ��� means that the computations � and � can-
not be distinguished by any of the processes in

�
.

The relation � � � is an equivalence relation on
�

. We
denote the equivalence class of � � � containing � by � � ��#
(i.e., � � �$# �&% �'� �)(�*� � ����+). For a set , , - ,.- stands for
its cardinality. For a computation � , - ��- is its length.

Definition 2.3. Let /1032 and
��4

be process sets, 2�
356
/87��� ��9 7:7;7 ��< � � means ��� ��9 7:7;7 ��<	=?> �!� and �*� ��< � � , for some
computation y.

Principle of computation extension: Let @ be an event
on

�
.

1. If @ is an internal or send event, and �����A@B� is a compu-
tation, and ��� � �!� , then ����� @C� is a computation.

2. If @ is an internal or receive event and ����� @C�D� � �!� , then���E�F@C� is a computation, where ���E�F@C� is the sequence
obtained by deleting @ from � .

Definition 2.4 (Knowledge). � � knows �D� at � if for all�F�G� � � # , � at � is true.

2.3. Local Predicates

Let � be a predicate on system computations, and
�

be
a set of processes. The predicate

�
sure � is defined as

follows.

Definition 2.5. � � sure �;� at � if � � knows �D� at � or� � knows H3�D� at � .

In other words, � � sure �D� at � means that
�

knows the
value of � after � .

Definition 2.6. � is local to
�

if, for all � , � � sure �D� at � .

That is, the value of � is always known to
�

. Local predi-
cates capture our intuitive notion of a predicate whose value
is controlled by the actions of the process to which it is lo-
cal.

Notation. The operator knows has higher binding than
at , so � � knows �D� at � may be written as

�
knows � at � .

3. Definition of Belief

Knowledge has proven to be useful in establishing lower
bounds for some distributed algorithms [2]. In general,
however, many algorithms cannot be characterized with
knowledge because of its strict requirements. For exam-
ple, one property of knowledge is that only true things can
be known (

�
knows � at � �?I � at �). Consider a

shared network printer. If a client comes to know that the
printer has paper in its tray, then it must be the case that
there is indeed paper in its tray. Another consequence of
the classic definition of knowledge is that knowledge about
a remote predicate cannot be lost by receiving a message. In
the case of the shared printer, a client cannot “forget” that
there is paper in the printer tray simply by receiving mes-
sages. Knowledge requires that the client send a message
in order for the remote predicate to become false. In prac-
tical terms, this means the printer cannot empty its paper
tray unless all its clients (that knew the tray was nonempty)
send a message with their permission! Until that happens,
the printer must maintain paper in its paper tray.

Clearly, this is too restrictive a requirement for loosely
coupled systems, where clients can dynamically join or
leave, and where client crashes or suspensions are frequent.
In practice, the printer is allowed to modify its local state
(i.e., empty its paper tray). That is, the state of the paper
tray is never known to remote clients in the formal sense.

Nevertheless, messages indicating that there is paper in
the tray can be useful to clients. While, strictly speaking,
receiving such a message does not increase the knowledge
a client has about the current state of the printer tray, it
clearly communicates something about a recent past state,

with the corresponding likely consequences for the current
state. With this in mind, we define a notion of belief for
distributed systems.

Let � ��� � # denote the subset of � � � # where predicate �
holds true. That is, � ��� � # � % � � � � � # (� at � is true + .
Then,

�
knows � at � is equivalent to � � ��# � � � � �$# . A nat-

ural way to generalize knowledge is the following: process�
believes � at � means � holds for most (or some) compu-

tations isomorphic to � with respect to
�

. More precisely,
we might quantify belief by attaching a real number � with2'
��
 �

. So, a first attempt to define “
�

believes � at �
with � ” would be - � ��� � # -

- � � � # -
� �

However, there is a technical problem with this defini-
tion. Since the computations can be arbitrarily long, the set� � �$# can be infinite, as can the numerator of the above ex-
pression. (If the numerator is finite and the denominator is
infinite, then the fraction would be 0). Therefore, we need
to define the belief more carefully. To this end, we first in-
troduce some notation.

For a natural number � , let
�
	 � % � � � (- ��-�
�� + .

That is,
��	

is the set of all system computations of length
at most � . If there are / processes in the system and each
process has
 possible actions, then - � 	 -�
��

	4�� 9 ��
 /�� 4 �
����
 /�� 	���> � � ������
	/ � � � . For each computation � , pro-
cess set

�
, predicate � , and natural number � such that� 	�� � � � # is not empty, we define a (rational) number� 	 � � 	 � �
A�B
 � � by

� 	�� - � 	�� � ��� � # -
- � 	�� � � � # -

We obtain a sequence of rational numbers � � 	 � 	�� 9
with2
 � 	
 �

. Note that � 	
represents the fraction of

the computations of length at most � in the class � � � # for
which � is true. A second attempt to define belief would
be to use the limit of this sequence. That is,

�
believes �

at � with � when � � ! 	#"%$ � 	 � � . Unfortunately, there
is still a technical problem with this attempt: Not every se-
quence of real (or rational) numbers has a limit. However,
every sequence of real numbers does have a lower limit (de-
noted by � � !&� ')() and an upper limit (denoted by ��� !�*,+.-).
The lower (upper) limit of an infinite sequence / is the infi-
mum (supremum) of the limits of all infinite subsequences
of / . There is no reason to prefer one of these limits over
the other in defining belief. Indeed, the average of the two
limits has some pleasing symmetries.

Definition 3.1 (Belief).
�

bel 0"� at � if
�
1 � ��!2� ')(#"%$ � 	23 �

1 ��� !�*,+.-	#"%$ � 	 � �

Notation: We will often write � ��! � 	
, � � !&� ')(� 	

, and
��� !�*,+.- � 	

to mean ��� !	�"4$ � 	
,� � !&� ')(#"%$ � 	
and � � !2*�+.-	#"%$ � 	

respectively.
Although � � ! � 	

need not exist for an arbitrary se-
quence � 	

, � � !&� ')(� 	
and � ��!�*�+.- � 	

always do. When
��� ! � 	

does exist, � ��! � 	 � � � !&� ')(� 	 � � ��!�*,+5- � 	 �>6 � ��!2� ')(� 	 3 >6 � � !2*�+.- � 	
. Moreover, since 2
 � 	
 �

for all � , both � ��!2� ')(� 	
and � ��!�*,+5- � 	

are between 0
and 1.

4. Properties of Belief

Our first observation is that
�

knows � implies
�

bel 0 �
for any 2
7�
 �

; in particular,
�

bel
> � . Con-

versely, when the sequence � 	
is constant,

�
bel

> � im-
plies

�
knows � . In general, however, a belief of 1 is not

the same as knowledge. This distinction is illustrated by the
following example.

Example 4.1. Consider the system consisting of two pro-
cesses, � and 8 . Let � ’s and 8 ’s computations consist of 9 �;:
and 9=<>: respectively, where 9 � and 9=< are internal events
(skip actions) on the corresponding processes. The set of
system computations is ��9 � - 9 < �?: . Let � be 9 < 9 < and let �
be the predicate “There are at least 2 events”. It is not the
case that � knows � at � (since �*� ����� where � � 9 < , yetH�� at �). However, it is the case that � bel

> � at � (since� 	�� 	 =*>	���> for � � �
, and hence ��� ! 	�"4$ � 	�� �

).

The following lemma states some basic properties of be-
lief.

Lemma 4.1.

1. If @&0
>6 �A��� !&� ')(� 	 3 � ��!�*,+5- � 	 � then H � � bel B� at � �

2.
�

bel 0 � implies
�

bel B � for all @
��
3. � � bel 0 �D�DC H&� � bel 0 �D�
4.

�
bel

9 � for any predicate � .
5. � � knows �D� I � � bel

> �D�
6. If � 	

is constant, � � bel
> �D� I � � knows �;�

7. If there exists an integer � 9
such that - � -
E� 9

for
all ��� �

, that is if the lengths of computations are
bounded, then
i) � 	 � �)F for all �"
?G � � 9

, that is the sequence� 	
eventually becomes constant.

ii) � � bel
> �D��H � � knows �D�

8. If ��� � �!� then � � bel 0 � at � ��H � � bel 0 � at ���
9. � � � bel 0"�D��I � � I �KJ�� � I � � bel 0"�KJ��

10. ��� � bel 0 �D�)I'� � bel B � J�� � I �
bel ������� 9	� 0 � B =?>�
 � � I�KJ!�

11. ��� � bel 0��D� I � � bel B � J � � I �
bel ������� 0 � B
 � ��C � J �

12. ��� � bel 0 �D� C � � bel B �KJ�� � I �
bel ��
 ��� 0 � B
 � ��C"�KJ!�

13. � � bel 0 � at � � I � � bel
> = 0 H3�D� for the maximal be-

lief level of � , i.e., for � � >6 � � ��!2��'.(� 	 3 ��� !�*,+.- � 	 �

14.
�

bel 0 � � knows �D� I �
bel 0"�

15.
�

bel 0 � � bel B �D� I �
bel B � , if �G0 2

16. ��� ��� � � #�� � ��� � # � � � � � # � I ��� � knows � at �
Proof. Most of these properties follow from the definition
immediately. We give a proof of 13 as an example. Let �� 	
be the sequence associated with H�� , so that � 	 3 �� 	 � �
for all � . Therefore, �� 	 � � � � 	

and ��� !2��')(C���� 	 � �
��� !&� ')(B� � � � 	 � � � 3 ��� !&� ')(:��� � 	 � � � �#� ��!�*�+.-?� � 	 � and
��� !2*�+.-����� 	 � � ��� !�*,+.-�� � � � 	 � � � 3 ��� !�*,+.-�� � � 	 � �
� � � ��!2� ')(� � 	 � . Hence,

>6 � � ��!2��'.(��� 	 3 ��� !2*�+.-��� 	 � �>6 � 1 � � � ��!2��'.(� 	�3 � ��!�*,+5- � 	 ��� � � �
>6 �A��� !2��')(� 	�3

��� !2*�+.- � 	 � � � � � 7
The following lemma is proven using Theorem 4 in [2].

Lemma 4.2. For arbitrary process sets
� > 7;7:7 ��<

, predicate� , and computations � and � , if � � >
knows 7;7:7 ��<	=*>

knows� ��<
bel 0 � at � � � and ��� �8> 7;7:7 ��< ��� , then � ��<

bel 0 � at ��� .
Proof. Assume that � � >

knows 7;7:7 � <	=?>
knows � � <

bel 0� at � � � and ��� �8> 7:7;7 ��< �!� . We need to show � ��<
bel 0� at ��� . Since ��� �8> 7;7:7 ��< ��� , there exists a computation �

such that ��� �8> 7;7;7 ��< =*> � � and � � ��< �!� . By Theorem 4 in
[2], we have

��<	=?>
knows � ��<

bel 0 �D� at � which implies��<
bel 0 � at � . Finally, since � � ��< ��� ,

��<
bel 0 � at � .

5. Transfer of Belief

The following lemma from [2] is of fundamental impor-
tance in transfer of knowledge. We state it below and give
an alternative and more elementary proof. It gives strong re-
strictions on the transfer of knowledge about remote pred-
icates. We show that this lemma does not hold for belief.
Therefore, the notion of belief does not have these restric-
tions, making it more flexible for systems where processes
are loosely coupled.

Lemma 5.1 (Knowledge Transfer). Let � be a predicate
that is local to �� and �����A@C� be a computation where @ is an
event on

�
.

1. If @ is a receive, then � � knows � at � � I � � knows� at �����A@C��� (Knowledge is not lost).

2. If @ is a send, then � � knows � at ����� @C� � I � � knows� at � � (Knowledge is not gained).

3. If @ is an internal event, then
�

knows � at � �
� � knows � at ����� @C� � (Knowledge is unchanged).

Proof. We prove Part 1. Let � be a computation such that����� @C�D� � � � . Consider � �E�'@C� , which is a computation by the
principle of computation extension. We have � � � @C�D� � �!� ,
and therefore � at � �F��@C� and � at � (since � is local to��).

Unlike knowledge, a process’s belief about remote pred-
icates may change by any one of the three types of actions
(events). Indeed, a receive action or a send action can in-
crease or decrease belief. Perhaps more surprisingly, even
an internal event in a process may change its belief about
remote predicates.

Lemma 5.2 (Belief Transfer). Let � be a predicate that is
local to �� and let � and �����A@C� be computations where @ is
an event on

�
.
�

’s belief of � from � to ����� @C� may increase
or decrease, regardless of whether @ is a receive, a send, or
an internal action.

The following sequence of examples illustrates some of
these possibilities. The examples consider a system of two
processes, � and 8 . In each example, � has some belief
regarding a predicate � that is local to 8 . The first example
shows how a receive action can increase or decrease belief,
depending on the value that is received.

Example 5.1. Let the events on 8 consist of three possible
internal events (9 < , � , and �) and two possible send events
(/�� and /��). Process computations for 8 are strings of the
form � 9 :< /��;9 :< or �,9 :< /�� 9 :< . Informally, 8 begins by flipping
a coin and then eventually sends the result of the coin toss
to � . The events on � consist of the internal event 9 � and the
receive events ��� and � � . Process computations for � are
strings of the form 9 :� � � or 9 :� � � .

Now let � be the predicate “an � occurred” and � be the

computation � /�� . Then we have � 	 � !" 	 #�	���>�$	 #�	���>�$ ��> , and
hence � bel !" � at � .

Once � receives a message, however, this belief changes.
Extending � with � � we obtain � bel

> � at �����%� � � . In fact,
we have

�
knows � at ������� � � . On the other hand, extending� with � � yields � bel

9 � at �����%� � � . Thus, while receive
actions can only increase knowledge, they can increase or
decrease belief.

The next example illustrates how sending a message can
increase belief in a remote predicate.

Example 5.2. Let process computations for 8 be strings of
the form �&�'� 9 :< or � �(�,9 :< . Informally, 8 waits to receive a
message from � and then generates the corresponding event.

Process computations for � are strings of the form 9 :� /�� or
9=:� /�� .

Again, � is the predicate “an � occurred” and let � be the
empty computation. Then we have

�
bel

9 � at � . Extension
of this computation with a send by � , however, can strictly
increase � ’s belief:

�
bel

> � at �����?/�� � .
The next example shows that modifications of belief do

not require extremal changes. That is, belief may increase
to a value strictly less that 1, or decrease to a value strictly
greater than 0.

Example 5.3. Let process 8 have a single internal event,
9 < , and a single send event, /�� (corresponding to an “abort”
message). Similarly, process � has an internal even, 9 � , and
a receive event, ��� . Process 8 ’s computations are either of
the form 9 :< or one of: / � , 9=<>/ � , or 9=< 9=<D/ � . Conversely, � ’s
computations are either of the form 9 :� or 9 :� � � .

Now let � be the predicate “there are at least 3 events on
8 ”. This predicate is local to 8 . Let � be the computation
9 < /�� . In this case, � bel

> � at � . Extending this computation
with a receive, however, decreases � ’s belief to a non-zero
value: � bel !� � at ������� � � .

The last example shows how internal actions may change
a belief about a remote predicate.

Example 5.4. Let process computations for 8 and � be pre-
fixes of 9=< 9=< and 9 � 9 � (internal skip events) respectively.
Let � ���

be the empty computation and � be the predicate
“there are at least 2 events on 8 ”. Then � bel !� � at � . Ex-
tending � by an internal action 9 � , we find that � ’s belief in� increases: � bel !" at �����?9 � � .

The examples in this section illustrate how a process’s
belief in a remote predicate can increase or decrease as a
result of sends, receives, or internal actions.

6. Applications of Belief

In this section, we consider two common constructs in
distributed systems: leases and directories. Both constructs
have proven to be very useful in the construction of real,
asynchronous distributed systems, but a knowledge-based
analysis does not accurately capture their utility. Instead,
belief can be used to characterize these constructs.

6.1. Asynchronous Leases

A lease is a time-driven mechanism for releasing remote
resources. It has been used to address a variety of problems
in distributed system design, including cache consistency
[8] and garbage collection [4]. Leases can be used to isolate
a system from the failure of an individual component.

For example, in garbage collection, a reference is re-
leased only with an accompanying lease. The server guar-
antees the availability of the referenced object only for the
duration of the lease. If the client wishes to maintain the
validity of the reference it holds, the corresponding lease
must be renewed with the server. If the client crashes, its
lease eventually expires, and the server can safely garbage
collect the referenced object.

Leases can be characterized using knowledge from the
point of view of both the holder and the grantor of the lease.
In the case of garbage collection, for example, granting a
lease reflects knowledge that a remote reference exists. The
expiration of a lease reflects the knowledge that a (valid)
remote reference no longer exists.

In a purely asynchronous system, timeouts cannot be
used reliably. In this case, the lease mechanism still has
application, but the expiration of a lease triggers a message
and acknowledgment protocol between the grantor and the
holder. It is the reception of an acknowledgment from the
holder that allows the grantor to know that the resource rep-
resented by the lease is no longer held by the remote client.

When failures can occur, however, the grantor cannot
rely on an acknowledgment to learn something about the
lease holder (since the lease holder may have crashed). In
these cases, the grantor must be able to learn something
from the sending of a message alone. This suggests that
asynchronous leases should be modeled as reflections of be-
lief rather than knowledge.

For a server � granting a lease to a client 8 , the property
obtained is � bel 0 8 holds r (where r is a reference to the
corresponding resource). The belief threshold � may be a
function of the likelihood of 8 crashing. This belief may
decrease by the local actions in � , modelling the decline of
the corresponding belief as a function of time. The expi-
ration of an asynchronous lease is also a local action at the
server. The server’s belief about a client holding a lease may
also change (more dramatically) by a send action. After this
send, a new belief property of the form � bel BGH&�A8 holds r �
is obtained. It is this belief that justifies garbage collection
by the server.

Because belief (even with a threshold of 1) is not neces-
sarily knowledge, holding (or granting) a lease is not a guar-
antee of availability (or unavailability) of the corresponding
resource. This belief-based formulation reflects the best-
effort semantics of real distributed leases, such as those pro-
vided in Jini [4].

Consider a basic asynchronous lease in a system with
a server, � , (the grantor of the lease) and a client, 8 , (the
holder of the lease). Events on 8 include: sending a request
(/��	� <), receiving the granting of the lease (��
�� �), receiv-
ing the expiration of the lease (�
� # �), and sending an ac-
knowledgement of the expiration (/ �����). The correspond-
ing sends and receives are events on � . In addition, internal

events � < and
� < represent client computation while hold-

ing the lease and while not holding it (“using” and “local”
respectively). The protocol is illustrated in Figure 1.

l q

*

S

S

R

R

req grt

req grt u j
q

k

q

p
S

SR

R

exp

exp

ack

ackpl l p

*

Figure 1. Messages Exchanged for an Asyn-
chronous Lease

As seen in this figure, the client’s computations are pre-
fixes of

/ � � < �
�� � � � - � <D����� � # � / ����� � :<
while the server’s computations are prefixes of

� � � < /
�� �D� � - � � � � / � # � � ����� � :�
To model the potential for client crashes, we add an-

other client event, � < (for abort). An abort can occur while
holding the lease or after receiving an expiration notice but
before sending the corresponding acknowledgement. The
client computations are therefore prefixes of

/ � � < �
 � �D� � - � <;��� � � < - � � # � � < - � � # �;/ � ��� � :< �
Let � be the predicate “ 8 is using the resource”. Then� at � is true if � contains ��
�� � but does not contain �
� # �

or � < . Let � be the computation /�� � < � � � < /
 � � . It is not
the case that � knows � at � . That is, even after granting
the lease, � does not know whether 8 is using the resource.
However, � bel 0 � at � with � � �

��>
6 �

��� . Notice that the

value of � , which is close to
>6 for large � , is a reflection of

the likelihood of crashes at the client.
Let � � be the computation ����� � �� � (the computation � ex-

tended by
 local events on �). Then we find that � bel 0 � at� � with � � �6 � � ���
	��
	 "�
	 " � ��> where , ��� �
�
�
� 6

�
��>�� � �

. This

quantity is asymptotically equivalent to
>

6 � � � . Therefore,

this belief goes to 0 as
 goes to infinity, for a fixed � (see
Figure 2).

We also compute that � bel
9 � at � for � � ����� / � # � � ,

equivalently, � bel
> H � at � . Thus, after sending the ex-

piration notice, � believes with 1 that 8 is no longer using
the resource. In practice, � can determine when to send this
notice according to its decay in belief that 8 is still using the
resource. That is, when � ’s belief, as illustrated in Figure 2,
decreases beneath some threshold, the lease expires. Thus,

 functions as a timer, triggering the expiration of the lease.

0.2

0.3

0.4

0.5

belief

100 200 300

k

Figure 2. Decline of server’s belief as a func-
tion of its local events (for j=50)

6.2. Distributed Directories

For bootstrapping a distributed application, components
must find their remote counterparts. Typically, some form
of naming service or directory is used (e.g. the CORBA
naming service [16], the Java RMI registry [18], or UDDI
for web services [14]). This model is based on the assump-
tion that such a directory is more easily found than specific
application components.

An entry in a directory is often modelled as a reflection
what the directory knows about the remote application com-
ponent. For example, an entry might include what interface
is used to access the component and where the component
is located. This knowledge is gained when the directory re-
ceives a message (a registration) from this component.

For real, loosely coupled, distributed systems, however,
this knowledge-based model of a directory service is too
stringent. The knowledge-based characterization requires
that the directory can only “forget” information by sending
a message. Thus, an application component that is regis-
tered with a directory service must maintain the same inter-
faces and be at the same location as indicated in its registry,
until it receives a message from the directory! Thus, any
information registered with a directory service (modeled by
knowledge) represents a loss of volition on the part of the
application component. This loss of volition is not appro-
priate for loosely coupled systems (e.g., with high mobility,
or independent reversioning of interfaces).

Even in loosely coupled systems, however, directories
are still useful constructs. They are useful not because their
entries represent knowledge, but rather because they repre-
sent belief. The remote application component may or may
not have the attributes encoded in its registration, but the di-

rectory believes (with a certain threshold) that the entry is
correct. Other components, by querying the directory ser-
vice, would learn about this belief. For a component � us-
ing a directory � that has an entry � regarding a registered
component, the property obtained is � knows � bel 0 �C7
With this model of directories, application components can
still change their state, so long as this possibility is reflected
in the threshold (�) of belief.

7. Conclusion

In this paper we have proposed a formalism for the no-
tion of belief in distributed systems based on isomorphisms
of system computations. We have shown that this formalism
is a generalization of the previously introduced and formal-
ized notion of knowledge, which has proven to be useful
in reasoning about distributed systems. Knowledge alone,
however, is not adequate in loosely coupled distributed ap-
plications, where the required loss of volition is too strict of
a requirement. We have demonstrated how the more gen-
eral notion of belief can be applied to describe applications
where knowledge is too restrictive. It seems likely that the
notion of belief introduced in this paper can also be applied
to some of the classical consensus problems in distributed
systems, such as the coordinated attack problem [7], where
a knowledge-based solution is known to be impossible.

8. Acknowledgements

The authors gratefully acknowledge the Distributed
Components research group at The Ohio State University,
as well as the anonymous referees, for numerous insights
and helpful comments on earlier drafts of this paper. This
work was supported by NSF ITR grant CCR-0081596, and
an Ameritech Faculty Fellowship.

References

[1] Aumann, R.J. Agreeing to disagree, Annals of Statis-
tics, 4:6, 1976.

[2] Chandy, K. M. and Misra, J. How processes learn Dis-
tributed Computing 1, 1986, pp. 40-52.

[3] Cresswell, M. J. Logics and Languages. London:
Methuen and Co., 1973.

[4] Edwards, W. K. Core Jini. P T R Prentice-Hall, En-
glewood Cliffs, NJ 07632, USA, 2001.

[5] Fagin, R., Halpern, J. Y., Moses Y. and Vardi, M. Y.
Knowledge-based programs Distributed Computing,
10:4, 1997, pp. 199-225.

[6] Friedman, N. and Halpern, J. Y. Modeling belief in
dynamic systems part II: revision and update Journal
of AI Research, 10, 1999, pp. 117-167.

[7] Gray, J. N. Notes on data base operating systems. In
Operating Systems, An Advanced Course, LNCS, vol
60, Springer-Verlag, 1978, pp. 393-481.

[8] Gray, C. G. and Cheriton, D. R. Leases: An ef-
ficient fault-tolerant mechanism for distributed file
cache consistency. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles,
pp. 202–210, 1989.

[9] Halpern, J. Y. Reasoning about knowledge: a sur-
vey, Handbook of Logic in Artificial Intelligence and
Logic Programming, Vol 4, D. Gabbay, C. J. Hog-
ger, and J. A. Robinson, Eds, Oxford University Press,
1995, pp. 1-34.

[10] Halpern, Y. J. and Fagin, R. A formal model of knowl-
edge, action and communication in distributed sys-
tems, Proceedings of the 4th ACM Symposium on
Principles of Distributed Computing, 1985, pp. 224-
236.

[11] Halpern, J. Y. and Moses, Y. Knowledge and common
knowledge in a distributed environment, Journal of the
ACM 37:3, 1990, pp. 549-587.

[12] Hintikka, J. Knowledge and belief, Cornell University
Press, 1962.

[13] Lynch N. and Fischer M. A lower bound for the time to
assure interactive consistency, Information Proc Let-
ters 14, 4, June 1982.

[14] McKee, B., Ehnebuske, D., and Rogers, D.
UDDI version 2.0 API specification. available at
http://www.uddi.org/specification.html, June 2001.

[15] Moses, Y. and Shoham, Y. Belief as defensible knowl-
edge, Artificial Intelligence, 64 (2), 1993, pp. 299-
322.

[16] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification, Febru-
ary 2001. Revision 2.4.2.

[17] Parikh, R. and Krasucki, P. Communication, consen-
sus, and knowledge Journal of Economic Theory, 52
(1), 1990, pp. 178-189.

[18] Sun Microsystems, Inc., 2550 Garcia Avenue, Moun-
tain View, California 94043-1100. Java Remote
Method Invocation Specification, revision 1.7, Java 2
SDK, v1.3.0 edition, December 1999.

