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Abstract. A Binary Decision Diagram (BDD) is an efficient represen-
tation of a Boolean formula with many applications in model checking,
SAT solving, networking, and artificial intelligence. This paper uses the
RESOLVE specification and reasoning framework to formally verify the
functional correctness of a Java implementation of a BDD component.
RESOLVE uses rich mathematical abstractions and clean value-based
semantics for modular reasoning of assertive code. Java, on the other
hand, includes many language features that are inconsistent with this
notion of clean semantics and modular reasoning. Aliases, in particular,
are easily created via assignment, parameter passing, and iterators, so
reference-based semantics and points-to analysis are usually necessary
when reasoning about Java code. This paper demonstrates the combi-
nation of these two paradigms. The implementation uses Java, but in a
disciplined way and layered on a component catalog expressly designed
to support modular reasoning. The assertional aspects of the code use
RESOLVE, but are tailored to Java syntax and language constructs.
In the development of the correctness proof for the BDD component,
several errors in the original Java implementation were discovered and
corrected. These errors were present despite the implementation passing
an extensive test suite, exhibiting the value of the proof. The verification
also exposed a limitation in the more general component design pattern
related to unreachable code.

Keywords: Formal Verification · Value Semantics · Modularity · Binary
Decision Diagram.

1 Introduction

In order to be tractable, software verification must be modular. That is, the
correctness of the entire system must follow from the correctness of its individual
components. Modularity allows for components to be verified in isolation and for
the cost of this verification to be amortized over the re-use of these components
across multiple systems.

The work presented in this paper uses the RESOLVE (REusable SOftware
Language with Verifiability and Efficiency) framework [34], which is both an
integrated implementation and verification system as well as a design discipline
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aimed to promote component re-use by easing client-side reasoning. The im-
plementation notation uses assertional code with value semantics and the asso-
ciated verification system uses extendable mathematical theories with custom
decision procedures for automated verification. The discipline prescribes prin-
ciples for interface design, the tenets of which reduce overall software cost and
improve quality [40]. While the RESOLVE discipline is typically applied to soft-
ware components written in the RESOLVE language, elements of the discipline
could, in principle, also be adapted for use with industry-standard program-
ming languages such as Java. This combination of Java and RESOLVE would
leverage the strengths of both: the robust full-functional verification possible in
RESOLVE and the practicality of an industry-standard programming language
such as Java. This paper considers the feasibility of such a combination.

The primary contribution of this work concerns the careful construction of
a proof that formally establishes the correctness of a Java-based Binary De-
cision Diagram component, the implementation of which is layered on top of
a RESOLVE-style component library with RESOLVE specifications. Because
industry-standard languages such as Java and C were not designed with ver-
ification in mind, they include many features that challenge the soundness of
modular reasoning, including: aliasing-by-default, reference semantics, ubiqui-
tous side-effects, and concurrency. Because of these challenges, the verification
of software written in these languages is often restricted to subsets of proper-
ties of interest (e.g., race detection) or limited in generality (e.g., reasoning over
memory locations rather than abstract mathematical values).

In contrast, the verification effort described in this paper entails both full-
functional correctness and value-based reasoning. As a result of this verification,
several errors were identified in the original BDD component implementation.
In addition, we present several observations related to the success of adapting
RESOLVE for application in the context of the Java programming language.

2 Background

2.1 Previous Work

While the RESOLVE discipline is typically applied to programs written in the
RESOLVE programming language, there exists a substantial library of RESOLVE-
style components written in the Java programming language. None of these
components have been formally verified, however, despite their adherence to
the discipline. This paper describes the verification of one of these components,
BooleanStructure, which implements a Binary Decision Diagram (BDD). BDDs
are frequently used and versatile data structures that represent Boolean formu-
las. BDDs have unique features that make them preferable to other common rep-
resentations of Boolean formulas such as truth tables and propositional formulas.
These features improve the efficiency of BDDs and make them more useful than
other common representations for solving complex problems with many vari-
ables. In 2018, Asim [3, 2] developed a Binary Decision Diagram software com-
ponent in the Java programming language. Unlike existing BDD components,
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this BDD was developed with verification in mind, including behavioral specifi-
cations. This component was carefully constructed following the RESOLVE dis-
cipline, including the definition of an abstract mathematical model of state, an
interface supporting observability and controllability, and a layered implementa-
tion that separates core functionality from secondary operations. This software
component has been formally verified in this work and is accessible on GitHub
[35].

2.2 Existing BDD Implementations

Existing software packages with implementations of the BDD data structure
are available for commonly used programming languages such as Java, C, and
Python, including BuDDy [25], CuDD [37], CacBDD [28], SableJBDD [31], JDD
[38], Sylvan [11], and BeeDeeDee [27]. Of these packages, SableJBDD and JDD
are Java-based. None of these packages have been formally verified or include
formal specifications, however, so correctness guarantees cannot be made and
the formal verification of these components would require substantial effort.

2.3 Applications of BDDs

BDDs are useful data structures in a variety of contexts, including disciplines
where correctness is critical. Some examples of these disciplines include Boolean
satisfiability, circuit design [24], formal verification, symbolic model checking,
network analysis [39], and artificial intelligence [23, 26].

BDDs have commonly been used in formal verification and model checking,
which are highly relevant to this work due to their strict correctness require-
ments. Symbolic model checking based on BDDs was originally used in hardware
model checking but was later extended to the domain of software verification.
Prior to the introduction of BDD-based symbolic model checking, practical hard-
ware verification via model checking was limited to models with less than 106

reachable states [9]. BDDs enabled practical verification of industrial systems
with state spaces of more than 1020 [8], which also allows for software verifica-
tion. Since they were popularized, BDDs have been frequently used in formal
software verification and symbolic model checking, including in the Berkeley
package HSIS for formal verification [4].

Despite the popularity and frequent use of the data structure, existing BDD
components have not been formally verified. Thus, guarantees about their cor-
rectness cannot be made. This is particularly relevant for formal verification and
symbolic model checking applications because the tools being used for verifica-
tion purposes are not verified themselves.

2.4 Object-Oriented and Automatic Verification

This work concerns the verification of a Java software component consisting of
two interfaces, an abstract base class, and a concrete derived class. A substantial
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barrier to this verification process and to reasoning about Java programs in
general is the presence of aliases. Reasoning about software with aliases is well-
known as a challenging problem [18]. Many techniques to control aliasing in
object-based languages have been proposed, including notions of ownership and
borrowing as in Rust [20], adding additional annotations just for aliasing [1],
and the use of separation logic [7]. Another approach is to modify the language
to prevent aliases altogether, such as requiring pointers to be unique [29] or
using swapping to avoid aliasing [22]. The RESOLVE discipline, which is used
in the component verified in this project, uses the notions of swapping and clean
semantics to avoid problems related to aliasing [21]. This paper demonstrates
some of the additional complexities of reasoning about aliasing in Java rather
than the RESOLVE programming language.

Considerable research exists in the area of automatic software verification
toward the goal of eliminating programming errors. Despite significant advances
in automated theorem provers, SAT solvers, and SMT solvers, the construc-
tion of a fully automatic verifying compiler remains a long-term challenge in
computer science. Challenges including aliasing, side-effects, fixed-width number
representations, and concurrency make verification of object-oriented languages
especially challenging. There has been relative success in this area using custom
programming languages explicitly designed with verification in mind. Verifica-
tion engines for such languages have been built using Dafny [15], RESOLVE [33],
Why3 [12], and Whiley [30]. These verifying compilers leverage formal reasoning
constraints built into the programming language to simplify automatic verifica-
tion. Some of these languages, such as RESOLVE and Why3, can be translated
to other languages such as C, Java, or Ada, but require that the program is
first developed in the language designed for formal verification. However, these
verifiers cannot be used for the BDD implementation because they were not
designed for components written in Java.

Advancement in the area of a verifying compiler for industry-standard pro-
gramming languages is also considerable but incomplete [6]. An influential verify-
ing compiler for the Java programming language is the Extended Static Checker
for Java (ESC/Java) [13]. Other successful prototype verifying compilers for
Java, C#, and C are the KeY prover [14], VeriFast [19], Spec# [5], and VCC
[10]. However, these verifying compilers use unique specification notations and
thus cannot be used for the BDD component. For example, the KeY prover uses
Java Modeling Language (JML) for specifications. To use these tools with the
BDD component, the formal specifications would need to be reconstructed to
match the required notation. Additionally, all of the library components used in
the BDD component that were developed in the RESOLVE discipline would need
to be replaced or modified to use the formal specifications of the new verifier.
Another challenge is that many of these specification notations lack the clean
semantics, full modularity, and comprehensibility of the RESOLVE framework,
all of which ease verification.
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3 Combining Value and Reference Semantics

3.1 RESOLVE and Value-Based Semantics

At the center of this project is the RESOLVE design philosophy and discipline
for software components that allows for ease of use by clients, reusability of soft-
ware, and the ability to formally verify both the software itself and the client
code that uses it. This discipline describes the principles to design and com-
pose high-quality component-based software systems. RESOLVE is also an in-
tegrated specification and programming language designed for building verified,
component-based software. It is imperative and object-based and has a collec-
tion of components such as those found in the standard libraries for C++, C#,
and Java. Programs written in RESOLVE can be verified with an automated
prover. Figure 3.1 illustrates this automated verification on a List component
for the Reverse procedure.

Fig. 1. A screenshot of the RESOLVE Web IDE

Parameter Modes An important construct in the RESOLVE discipline is the
definition of parameter modes for arguments in method contracts. Parameter
modes are used to define the modification frame of a method or loop. That is,
they define whether a method or loop body can change the value of a formal
parameter or variable. There are four parameter modes:

– Clears: The parameter is cleared to an initial value of its type
– Updates: The parameter can change value and the behavior of the method

can depend on the parameter’s (initial) value
– Replaces: The parameter can change value and the behavior of the method

does not depend on the parameter’s (initial) value
– Restores: (Default) The parameter’s final value is the same as its initial

value
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Mathematical Model A mathematical model is an abstract definition of a
component’s state space. It is implementation-independent and defines a precise
mathematical type that the client can use to reason about the component’s be-
havior. A mathematical model is written in terms of base types or mathematical
subtypes. Math base types are either basic types such as integers or booleans
or composite types such as tuples, sets, or strings (i.e., sequences). Math sub-
types are defined in terms of other math subtypes and base types. Math types
are related to types in Java but are not equivalent. For example, the math type
integer is infinite, but a Java int is bounded.

The math model for BooleanStructure is based on the mathematical type
BOOLEAN STRUCTURE. Clients use this math type to reason about the BooleanStruc-
ture component regardless of which implementation is used. The formal defini-
tion for this math type, shown in Listing 1.1, defines BOOLEAN STRUCTURE as a
pair containing a set of ASSIGNMENTs named sat and a string of integers named
vars.

Listing 1.1. BooleanStructure Mathematical Model

1 /∗∗
2 ∗ @mathsubtypes
3 ∗ ASSIGNMENT i s f i n i t e s e t o f i n t e g e r
4 ∗
5 ∗ BOOLEAN STRUCTURE i s ( sa t : f i n i t e s e t o f ASSIGNMENT,
6 ∗ vars : s t r i n g o f i n t e g e r )
7 ∗
8 ∗ @mathmodel type BooleanStructureKerne l i s modeled by

BOOLEAN STRUCTURE
9 ∗/

Correspondence and Convention The correspondence, which is also re-
ferred to as the abstraction relation, defines how a particular implementation’s
specific representation, and similarly its convention, relates to the math model
that applies to the general component interface that all implementations are
based on. This relationship between the math model of the component and the
mathematical representation of the concrete implementation allows a client to
ignore the details of the implementation and reason about the component using
only the mathematical model. Implementers are then able to reason about the
implementing class using the mathematical representation that relates to the
implementation details.

The convention, also referred to as the concrete invariant, defines constraints
on a specific implementation. The convention for the BooleanStructure imple-
mentation verified in this work, shown in Listing 1.2, shows that the component
has two constraints. The first is that the concrete field $this.sat does not con-
tain any variables other than the ones in the field $this.vars. Note that the
symbol “$” is used as a prefix to this to form $this when referring to the con-
crete state, in contrast to the abstract state which simply refers to this. The
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second constraint is that the $this.vars field does not contain any duplicates.
The correspondence for this component is trivial because it maps the concrete
representation consisting of two fields, $this.sat and $this.vars, to the math
model consisting of a tuple containing sat and vars.

Listing 1.2. BooleanStructure Convention and Correspondence

1 /∗∗
2 ∗ @mathdef in i t ions
3 ∗ NO EXTRANEOUS VARIABLES (
4 ∗ s : s e t o f ASSIGNMENT, t : s t r i n g o f i n t e g e r
5 ∗ ) : boolean s a t i s f i e s
6 ∗ f o r a l l a : ASSIGNMENT where ( a i s in s )
7 ∗ ( a i s subset o f e n t r i e s ( t ) )
8 ∗
9 ∗ NO DUPLICATES IN VARS (

10 ∗ t : s t r i n g o f i n t e g e r
11 ∗ ) : boolean s a t i s f i e s
12 ∗ | t | = | e n t r i e s ( t ) |
13 ∗
14 ∗ @convention
15 ∗ NO EXTRANEOUS VARIABLES( $ t h i s . sat , $ t h i s . vars ) and
16 ∗ NO DUPLICATES IN VARS( $ t h i s . vars ) and
17 ∗
18 ∗ @correspondence t h i s = ( $ t h i s . sat , $ t h i s . vars )
19 ∗/

3.2 RESOLVE with Object-Oriented Languages

The RESOLVE discipline defines guidelines for developing high-quality and ver-
ifiable software and applies when reasoning about the behavior of programs.
However, these discipline guidelines must be modified for use in practical pro-
gramming languages such as Java or C++. For instance, the Java constructs
of interfaces and classes are leveraged to accommodate the separation of ab-
stract and concrete representations of a component necessary for the RESOLVE
discipline [36]. Java components that use this discipline also commonly have
more than one implementing class in the component, each with different time
and space performance profiles but otherwise interchangeable from a client’s
perspective. In this way, each implementing class can have different concrete im-
plementations, but the client reasons about them in the exact same way using
the abstract representation, or math model, of the component. Another change
to the discipline is necessary because of the risks introduced by the presence of
inheritance in the Java programming language, since RESOLVE does not allow
this capability. This change is the separation of component methods into kernel
and secondary methods. Kernel methods are the minimal set of operations that
allow the client to give a variable of the type any allowable value (controllability)
and determine the value of a variable of the type (observability). Kernel methods
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must be re-implemented for every implementing class in the component. Con-
versely, secondary layered methods are “layered” on top of kernel methods in an
abstract class and are implemented as a client of the component, so they only
need to be implemented once but apply to all implementing classes. An illustra-
tion of the RESOLVE component design pattern that separates the kernel and
secondary methods of the BDD component is shown in Figure 2. This illustra-
tion also demonstrates the use of Java interfaces and classes to separate abstract
and concrete elements of the component. The methods of the BooleanStructure
component are also shown.

Standard
+ clear
+ newInstance
+ transferFrom

BooleanStructureKernel
+ evaluate
+ binary apply
+ unary apply
+ restrict

+ reorder
+ vars
+ setFromInt

BooleanStructure
+ copyFrom
+ negate
+ conj
+ disj
+ expand

+ toStringTT
+ isSat
+ isValid
+ isEquivalent
+ numVariables

+ isTrueStructure
+ isFalseStructure
+ setFromTree
+ satAssignment

BooleanStructureSecondary
• implements BooleanStructure methods (but not
BooleanStructureKernel or Standard methods)

• overrides Object methods

BooleanStructure Implementing Classes
• implements Standard methods
• implements BooleanStructureKernel methods
• may override BooleanStructureSecondary methods

Object
+ toString
+ hashCode
+ equals

Interface

Abstract Class

Class

extends

extends

implements

extends

extends

Fig. 2. BooleanStructure Component Diagram

The RESOLVE programming language has additional restrictions that are
not present in Java and must also be accommodated. For example, RESOLVE
uses call-by-swapping for parameter passing, unlike Java which allows references.
RESOLVE also lacks an assignment operator, which prohibits aliasing, so formal
verification in a Java component must verify that any aliases generated by the
use of the assignment operator do not disrupt the soundness of the verification.
The BooleanStructure component and all of the libraries used in it that follow
the RESOLVE discipline attempt to avoid the pitfalls of the assignment opera-
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tor by implementing the methods transferFrom and copyFrom. These methods
are used in place of the assignment operator to transfer and copy objects while
avoiding the complexities of aliasing. The BDD implementation of the trans-
ferFrom method assigns the concrete private fields of the BDD to those of the
source BDD. The copyFrom method builds a copy of the source BDD by making
copies of primitive types to avoid aliasing.

4 Formal Verification of the BDD Component

The full formal verification of a component involves the generation of loop in-
variants, reasoning tables, and proofs based on both the abstract and concrete
components of the software. The goal of each proof in this work is to verify the
correctness of a method in the BooleanStructure component. This verification
requires proving that each method meets the requirements of its postcondition
and eventually terminates. Details of the proof of correctness for this component
are in [32].

4.1 Loop Invariants and Iteration

The construction of loop invariants allows loops to be traced in a verification
proof without knowledge of how many times a loop will iterate during code
execution. A special case of loop invariants is when they involve iterators, which
require extra consideration in the verification process. An example of the for-
each syntax in Java with a loop invariant can be seen in Listing 1.3. The loop
in this example builds a duplicate of the sequence this.vars called newOrder.
Correspondingly, the invariant for this loop maintains that the variable newOrder
is always equal to the items in the collection this.vars that have already been
iterated over. For verification purposes, the elements of the iterator that have
been seen and unseen at a particular point in the loop can be accessed using the
“∼” operator, such as in ∼this.vars.seen. The parameter mode for the variable
∼this.vars is updates because the seen and unseen elements are changing each
iteration.

Listing 1.3. Example for-each Loop With Iterator

1 /∗∗
2 ∗ @updates newOrder , ˜ t h i s . vars
3 ∗ @maintains newOrder = ˜ t h i s . vars . seen
4 ∗ @decreases |˜ t h i s . vars . unseen |
5 ∗/
6 for ( int e l t : this . vars ) {
7 newOrder . add ( newOrder . l ength ( ) , e l t ) ;
8 }

However, this for-each loop syntax requires additional effort in the construc-
tion of proofs. An example of the challenge associated with loops in the for-each
format is that the loop body in Listing 1.3 cannot be used to prove that the
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value of |∼this.vars.unseen| decreases from one loop iteration to the next be-
cause the value of |∼this.vars.unseen| is never explicitly updated through a
call to an iterator’s next method. Similarly, ∼this.vars.seen is never explicitly
updated within the loop. However, the behavior of a for-each loop dictates that
the first operation of each loop iteration is to update this variable. Now, in the
first line of the reasoning table for this loop, the value of ∼this.vars.seen must
simultaneously be its value before and after the update from an implicit call to
next, which is undesirable.

To solve this problem, a strategy that maintains a close similarity to the
source code but still allows for proofs of the loop invariant and progress metric is
used, which is shown in Listing 1.4. This strategy is to add a comment containing
a call to the iterator’s next method at the beginning of the loop. This comment
solves the problem of the .seen variable having two simultaneous values because
in the reasoning table, .seen is updated after the commented call to next in line
7 of the listing. Thus, before line 7, the loop invariant is guaranteed to still hold,
but after line 7 this is no longer a guarantee and the value of the seen and unseen
elements of the collection have been updated.

Listing 1.4. Example for-each Loop With Iterator: Proof Equivalent

1 /∗∗
2 ∗ @updates newOrder , ˜ t h i s . vars
3 ∗ @maintains newOrder = ˜ t h i s . vars . seen
4 ∗ @decreases |˜ t h i s . vars . unseen |
5 ∗/
6 for ( int e l t : this . vars ) {
7 // e l t = t h i s . vars . next ( ) ;
8 newOrder . add ( newOrder . l ength ( ) , e l t ) ;
9 }

Due to the additional complexity of iterators, it is generally more desirable
to use libraries of verified components with built-in functionality to perform
tasks such as the one shown in Listing 1.3, which is to copy an object. These
library components help avoid the dangers involved with iteration, such as the
creation of aliases during iteration, but in this case the use of an iterator was
unavoidable. Iteration over containers with immutable types, as in this example,
does not threaten the validity of the proof, however.

4.2 Reasoning Tables and Proofs

A reasoning table is a method of organizing the facts and obligations, otherwise
known as verification conditions, generated from the implementation body of a
method. The facts and verification conditions are generated directly from spec-
ifications, the implementation, and the mathematical model, and the facts are
used to confirm that the required verification conditions are met. The techniques
employed in the production of the reasoning tables in this work use “natural
reasoning” formulated by Heym [16] to aid in comprehensibility and usability.
This reasoning technique is based on generating a sequence of facts that can
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be combined to form new facts to prove verification conditions. An example of
a reasoning table for the BooleanStructure method apply, which applies the
unary operator not, can be seen in Table 1. Note that the initial facts in the
reasoning table are the convention and correspondence from Listing 1.2. Other
facts and verification conditions in the table are generated directly from pre- and
postconditions of other component methods. The final verification conditions in
the table are generated from the method postcondition, shown in Listing 1.5,
and the restoration of the convention. The specification in Listing 1.5 refers to
#this, where the “#” symbol refers to the state of the object before the method
call and this refers to the final state.

Table 1. Unary apply Sample Reasoning Table

State Path Facts Obligations
public void apply(UnaryOperator op) {

0
this = ($this.sat, $this.vars)
NO EXTRANEOUS VARIABLES($this.sat0, $this.vars0)
NO DUPLICATES IN VARS($this.vars0)

if (op == UnaryOperator.NOT) {
1 op = NOT

Set<Set<Integer>> newSat = new Set2<Set<Integer>> ();
2 op = NOT newSat2 = {} |$this.vars0| = |entries($this.vars0)|

PowerStringElements allAssignments = new PowerStringElements(this.vars());

3
op = NOT allAssignments = $this.vars0 entries(∼allAssignments.seen3) \ $this.sat0 =

newSat2∼allAssignments.seen * ∼allAssignments.seen
= POWER STRING(allAssignments)

∼allAssignments.seen3 =<>
/**
* @updates newSat, ∼allAssignments
* @maintains entries(∼allAssignments.seen) \ $this.sat = newSat
* @decreases | ∼allAssignments.unseen|
*/
for (Set<Integer> a : allAssignments) {

4
op = NOT

entries(∼allAssignments.seen4) \ $this.sat0 = newSat4 | ∼allAssignments.unseen4| > 0| ∼allA...unseen4| > 0
// a = allAssignments.next()

5
op = NOT ∼allAssignments.seen5 = ∼allAssignments.seen4 * <a> NO EXTRANEOUS VARIABLES($this.sat0, $this.vars0)

<a> * ∼allAssignments.unseen5 = ∼allAssignments.unseen4 NO DUPLICATES IN VARS($this.vars0)
if (!(processAssignment(this.sat, this.vars, a))) {

6
op = NOT

not(a intersection...)
newSat.add(a);

7
op = NOT

newSat7 = newSat4 union {a}
not(a intersection...)
} // end if

8
op = NOT a intersection entries($this.vars0) is in $this.sat0 entries(∼allAssignments.seen5) \ $this.sat0 = newSat8

implies newSat8 = newSat4
not(a intersection entries($this.vars0) is in $this.sat0) | ∼allAssignments.unseen5| < | ∼allAssignments.unseen4|

implies newSat8 = newSat7
} // end for

9
op = NOT | ∼allAssignments.unseen9| = 0

NO EXTRANEOUS VARIABLES($this.sat9, $this.vars0)
entries(∼allAssignments.seen9) $this.sat0 = newSat9

this.sat.transferFrom(newSat);

10
op = NOT $this.sat10 = newSat9

newSat10 = {}
} // end if

11

op = NOT implies $this.sat11 = $this.sat10
this.vars11 = this.vars0
for all p: ASSIGNMENT where ( p is subset of entries(this.vars11) )

op /= NOT implies $this.sat11 = $this.sat0
( p is in this.sat11 iff
( ( if op = NOT then

not(p intersection entries(this.vars0) is in this.sat0) ) and
( if op = IDENTITY then

(p intersection entries(this.vars0) is in this.sat0) ) ) )
$this.vars11 = $this.vars0 NO EXTRANEOUS VARIABLES($this.sat11, $this.vars11)

NO DUPLICATES IN VARS($this.vars11)
} // end unary apply

Proofs of the verification conditions in the reasoning tables were constructed
in a custom format but follow the general structure of a direct proof, other-
wise known as a proof by construction. Facts taken directly from a reasoning
table are the proof assumptions. A sequence of small, carefully justified steps
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using these facts and mathematical axioms were used to construct new factual
statements or lemmas. These steps are small enough to be mechanically check-
able. This sequence eventually results in the verification condition for the proof.
Proofs of each verification condition for the BooleanStructure component were
constructed to form a single proof of correctness for the entire component.

Listing 1.5. Unary apply Specification

1 /∗∗
2 ∗ Apply the unary operator {@code op} to {@code t h i s }
3 ∗ without changing the t o t a l order o f the v a r i a b l e s o f
4 ∗ {@code t h i s } .
5 ∗
6 ∗ @param op
7 ∗ the unary operat i on to be app l i ed on t h i s
8 ∗ @updates t h i s
9 ∗ @ensures

10 ∗ t h i s . vars = #t h i s . vars and
11 ∗ f o r a l l p : ASSIGNMENT where ( p i s subset o f
12 e n t r i e s ( t h i s . vars ) )
13 ∗ ( p i s in t h i s . sa t i f f
14 ∗ ( ( i f op = NOT then not EVALUATION(#th i s , p ) ) and
15 ∗ ( i f op = IDENTITY then EVALUATION(#th i s , p ) ) ) )
16 ∗/
17 void apply ( UnaryOperator op ) ;

5 Limitation in the Component Design Pattern

The Java component design pattern discussed in Section 3 is used in a sizeable
component library which includes the BDD component verified in this work. Dur-
ing the process of verifying this BDD component, a shortcoming in the testing
capabilities of this design pattern was discovered. This limitation was discovered
in a component library used to teach thousands of computer science students
since 2012 and was previously never discovered. This lack of detection indicates
it is not an easily discoverable or obvious flaw. Additionally, it is likely that Java
component design patterns similar to the one used in the BooleanStructure
component also suffer from this testing limitation.

This limitation is related to how the design pattern uses abstract classes and
overridden methods. Note that a component following the design pattern used
in the BooleanStructure component may contain any number of implementing
classes. For example, the BDD implementation illustrated in Figure 3 contains
BooleanStructure1 and BooleanStructure2. Also note that these implement-
ing classes extend a single shared abstract class, BooleanStructureSecondary,
containing the layered method implementations.

The component design pattern is organized so that implementing classes are
interchangeable from a client’s perspective. Further, implementing classes may
override any number of the layered methods that are in the component’s abstract
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class. This is a desirable quality because overriding these methods allows their
performance to be improved by leveraging direct access to concrete representa-
tion fields.

However, an undesirable consequence of this design pattern occurs when ev-
ery implementing class overrides a particular layered method. Figure 3 illus-
trates this issue by listing which secondary methods are implemented in each
class of the BooleanStructure component. Notice how four layered methods
in BooleanStructureSecondary, including expand, isTrueStructure, isFalseS-
tructure, and satAssignment, are overridden by all implementing classes of
BooleanStructure. Since abstract classes cannot be instantiated directly, only
instantiations of implementing classes can be tested by the test suite. As a con-
sequence, if all of the implementing classes override a particular layered imple-
mentation, then that implementation never has the opportunity to be tested.
This flaw is not critical because this untested code is by definition never used
by any implementing classes so clients have no access to it. However, it is still
undesirable to have untested and unreachable code in a component. Further, a
future modification to the component may result in a new implementing class
that does not override a previously hidden layered method, thus exposing the
untested code and potentially an error.

...

BooleanStructure

BooleanStructureSecondary

• copyFrom
• negate
• conj
• disj
• expand
• toStringTT
• isSat

• isValid
• isEquivalent
• numVariables
• isTrueStructure
• isFalseStructure
• setFromTree
• satAssignment

BooleanStructure1
• expand
• isTrueStructure
• isFalseStructure
• satAssignment

BooleanStructure2
• expand
• isSat
• isValid
• isTrueStructure
• isFalseStructure
• satAssignment

Object

Interface

Abstract Class

Class

extends

implements

extends extends

extends

Fig. 3. BooleanStructure Secondary Method Implementations

To correct this limitation in the BooleanStructure component, the imple-
mentation was modified to include a new reference class that does not override
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any secondary methods. This design pattern limitation is an interesting exam-
ple of the challenges associated with verification using a language like Java that
allows inheritance and does not have the strict limitations of the RESOLVE
language.

6 Corrections to the Component

The unmodified BDD implementation contained 314 unit test cases in a test
suite with 96.3% code coverage. Despite the high quality of this test suite, two
implementation errors were discovered during the verification process. The de-
tection of these errors despite a rigorous test suite demonstrates the relevance
of the formal verification process. This also demonstrates how the verification
process can be practically carried out on a Java component with RESOLVE
specifications.

Additionally, many errors in the specifications were discovered in this process.
Errors of this variety could lead to mistakes in client code due to a misrepre-
sentation of BooleanStructure behavior. The errors of this type were also not
revealed by the test suite.

copyFrom Runtime Exception An error in the behavior of the copyFrom
method, which is shown in Listing 1.6, was discovered in the verification process.
This error was likely not discovered previously because the method appears to
be correct and passed many test cases with one-hundred percent code coverage.
The copyFrom method is a secondary layered implementation, so it is not based
on the underlying implementation of the component. In the original method
implementation, a runtime exception occurs when there are no satisfying assign-
ments in the method argument BooleanStructure x but the number of variables
is nonzero. An example of a Boolean formula with this quality is x1 ∧ ¬x1 be-
cause it has no possible satisfying assignments but it is over a nonzero number of
variables. In this scenario, the precondition for the reorder method that VARI-
ABLES(newExp) = entries(newOrder) cannot be satisfied because the conditional
block after if (x.evaluate(t)) never executes when x.sat is empty. Thus, the
variables in newExp remain in the initial empty state, causing a runtime exception
in line 28 in the call to reorder.

Listing 1.6. copyFrom Original Implementation With Error

1 public void copyFrom ( BooleanStructure x ) {
2 // Generate a f a l s e s t r u c t u r e with the same vars as x
3 BooleanStructure newExp = this . newInstance ( ) ;
4 newExp . negate ( ) ;
5 Sequence<Integer> order = x . vars ( ) ;
6
7 // Take the d i s j u n c t i o n o f every ass ignment in x . sa t
8 PowerStringElements a l lAss ignments = new

PowerStringElements ( order ) ;
9 for ( Set<Integer> t : a l lAss ignments ) {



Formal Verification of a Java Component Using the RESOLVE Framework 15

10 i f ( x . eva luate ( t ) ) {
11 // Conjunct terms in t and negat ions in not ( t )
12 BooleanStructure term = this . newInstance ( ) ;
13 for ( int v : order ) {
14 BooleanStructure vExp = this . newInstance ( ) ;
15 vExp . setFromInt ( v ) ;
16 i f ( ! t . conta in s ( v ) ) vExp . negate ( ) ;
17 term . conj (vExp) ;
18 }
19 newExp . d i s j ( term ) ;
20 }
21 }
22
23 // Reorder v a r i a b l e s in new s t r u c t u r e to match x ’ s order
24 Sequence<Integer> newOrder = new Sequence1L<Integer >() ;
25 for ( int v : order ) {
26 newOrder . add ( newOrder . l ength ( ) , v ) ;
27 }
28 newExp . r eo rde r ( newOrder ) ;
29
30 this . t ransferFrom (newExp) ;
31 }

toStringTT Violation of Postcondition The need for an additional constraint
in a method precondition was revealed when the formal verification of the method
toStringTT could not be completed. This method constructs a truth table rep-
resentation of the BDD. The original implementation of this method performed
a left bit shift operation based on the number of variables in the structure. How-
ever, since the long type in Java is limited to 64 bits, the method produced
an erroneous result and violated the postcondition if the number of variables
exceeded this limit. The added constraint in the precondition of the method
requires that the number of variables is less than 64.

Inconsistent isEquivalent Math Definition The specification for the isE-
quivalent method, which compares the logical equivalence of two BDDs, had
to be modified because the implementation and specification were inconsistent.
The original specification compared the satisfying assignments and variables of
the BDDs to check for equality. A modification to the specification was required
because it did not consider logically equivalent BDDs with different variables to
meet the specification, but the implementation did.

Missing newOrder Specifications The original newOrder private method, which
constructs a variable ordering that is compatible with two input orderings, had a
postcondition that was too weak to be useful. It required that the new ordering
was compatible with the original two, but did not require anything about the
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order entries. This is clearly too weak because an empty sequence would always
satisfy this postcondition. To correct this, additional postcondition requirements
were added to require that the new ordering variables are the union of the input
variables. Further, the method required a strengthened precondition to prove
a compatible ordering requirement of the original postcondition. In fact, a cor-
rect implementation of the specification without this precondition is impossible
because a nontrivial compatible ordering of the result and the two inputs is
impossible if the two inputs are not already compatible.

7 Conclusion

A contribution of this work is the identification of a limitation of the testing
capabilities of the Java component design pattern used in the BDD implementa-
tion. The current structure of this design pattern allows for the possibility that
all implementing classes of a component override the layered implementations
of secondary methods, thus leaving these layered implementations unreachable
and untested. This limitation demonstrates one of the challenges associated with
combining an industry-standard language such as Java with formal verification.

A second outcome is the construction of a proof that formally verifies the
correctness of a reference implementation of a Java-based BDD component. The
resulting formally verified BDD component can now be used with a high level of
confidence by clients. A third outcome resulting from the formal verification of
the BDD component is the identification and correction of errors. Errors were
discovered in both the specifications and implementation of the BDD component.
The errors discovered in the implementation are particularly notable because
they were not discovered by the comprehensive test suite. These errors were
discovered only in the formal verification process, which indicates how critical
formally verifying software is for error-resistant software development.

An expansion of this work is to develop an automated theorem prover to
automate the verification process of a Java-based component with RESOLVE
specifications. This verifier would be uniquely practical and useful because of
the use of an industry-standard programming language with a specification no-
tation that is particularly well-suited to client reasoning and modularity. This
project lays some groundwork for an automated prover of this type because it
provides a carefully constructed example of valid inputs and a corresponding
ideal expected output. A verifier for a Java-based component with RESOLVE
specifications would require the construction of a tool to automate the genera-
tion of verification conditions in a modular fashion. Existing RESOLVE verifiers
[33, 17] could then be leveraged with only slight modifications to discharge a
substantial proportion of the verification conditions in an automated way.
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