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SM vs DM 

• Shared Memory 
• Global physical memory equally accessible to all 

processors 
• Programming ease and portability 
• Increased contention and longer latencies limit 

scalability 
• Distributed memory 

• Multiple independent processing nodes connected by 
a general interconnection network 

• Scalable, but requires message passing 
• Programmer manages data distribution and 

communication 
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Distributed shared memory 

 
All systems providing a shared-memory abstraction on distributed 
memory system belongs to the DSM category 
 
• DSM system hides remote communication mechanism from 
programmer 
 

• Relatively easy modification and efficient execution of existing 
shared memory system application 
 

• Scalability and cost are similar to the underlying distributed 
system 
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 Global Address Space  

• Aggregate distributed memories into global address space 
– Similar to the shared memory paradigm 
– Global address space is logically partitioned 
– Local vs. remote accessible memory 
– Data access via  get(..) and put(..) operations 
– Programmer control over data distribution and locality 
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Global Array 

The Global Arrays (GA) Toolkit is an API for providing a portable 
“shared-memory" programming interface for “distributed-memory" 
computers. 

single, shared data structure/ 
global indexing 
 
e.g., access A(4,3) rather than 
buf(7) on task 2  

Physically distributed data 

Source: GA tutorial 6 
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Key Issues in designing DSM 

 
Three key issues when accessing data in the DSM address space 
 
DSM algorithm:  
 How the access of data actually happens 
Implementation: 
 Implementation level of DSM mechanism 
Consistency:  
 Legal ordering of memory references issued by a processor, 
as observed by other processors 
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DSM algorithms 

 
Single reader/single writer algorithms 

 
• Prohibits replication, central server algorithm 
• One unique server handles all requests from other nodes to 

shared data 
• Only one copy of data item can exist at one time 
• Improvement- distribution of responsibilities for parts of 

shared address space and static distribution of data 
• Performance is very low 
• Does not use the parallel potential of multiple read or write 
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DSM algorithms 

 
Multiple reader/single writer algorithms 
 

• Reduce cost of read operations because read is the most used 
pattern in parallel applications 

 
• Only one host can update a copy 
 
• One write will invalidate other replicated copies which 

increases the cost of write operation 
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DSM algorithms 

 
Multiple reader/Multiple writer algorithms 
 

• Allows replication of data blocks with both read and write 
 
• Cache coherency is difficult to maintain. Updates must be 

distributed to all other copies on remote sites 
 

• Write update protocol 
 

• High coherence traffic 
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Implementation of DSM 

Implementation Level 
 One of the most important decisions of implementing DSM 
 Programming , performance and cost depend on the level  
• Hardware 

• Automatic replication of shared data in local memory and cahe 
• Fine grain sharing minimize effects of false sharing 
• Extension of cache coherence scheme of shared memory 
• Hardware DSM is often used in high-end system where performance is 

more important than cost  
• Software 

• Larger grain sizes are typical because of virtual memory 
• Applications with high locality benefit from this 
• Very flexible 
• Performance not comparable with hardware DSM 
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Implementation of DSM 

 
• Hybrid 

• Software features are already available in hardware DSM 
 

• Many software solutions require hardware support 
 

• Neither software or hardware has all the advantages 
 

• Use hybrid solutions to balance the cost complexity trade offs 
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Memory consistency model 

Consistency 

• Sequential consistency 

• Processor consistency 

• Weak consistency 

• Release consistency 

• Lazy release consistency 

• Entry consistency 
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Memory consistency model 

Sequential Consistency 

• Result of any execution is the same as if the read and write 
occurred in the same order by individual processors 

• DSM system serialize all requests in a central server node 

Release Consistency 

• Divides synchronization accesses to acquire and release 

•Read and write can happen after all previous acquires on the 
same processor. Release, after all previous read, write execute 

• acquire and release synchronization accesses must hold 
processor consistency 
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TreadMarks 

• Shared memory as a linear array of bytes via a relaxed 
memory model called release consistency 
 

• Uses virtual memory hardware to detect accesses  
 

• Multiple writer protocol to alleviate problems caused by 
mismatches between page size and application granularity 
 

• Portable, run at user level on Unix machine without kernel 
modifications 

• Synchronizations – locks, barriers 
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TreadMarks 

Anatomy of a TreadMarks Program: 
 
Starting remote processes 
Tmk_startup(argc, argv); 
 
Allocating and sharing memory 
shared = (struct shared*) Tmk_Malloc(sizeof(shared)); 
Tmk_distribute(&shared, sizeof(shared)); 
 
Barriers 
Tmk_barrier(0); 
 
 Acquire/Release 
Tmk_lock_acquire(0); 
shared->sum += mySum; 
Tmk_lock_release(0); 17 



 Implementation 
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Sample TreadMarks program  
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Lazy release consistency 

Release consistency model 

• Synchronization must be used to prevent data races 

•Multiple writer 

•Twin 

•Reduce false sharing 

• Modified pages invalidated at acquire 

• Page updated at access time 

• Updates are transferred as diffs 

• Lazy diffs- make diffs only when they are requested 
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Eager release versus Lazy release  
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Multiple writer protocol 

• False sharing handle 

• Buffer written until synchronization 

• Create diffs, run length encoding page modifications 

•Diffs reduce bandwidth requirements 
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False sharing 
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 Merge PGAS and CUDA buffer 
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Diff 
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TreadMarks  system 

• Implemented as a user-level library on top of Unix 

• Inter-machine communication using UDP/IP through the 
Berkeley socket interface 

• Messages are sent as a result of an call to library routine or page 
fault 

• It uses SIGIO signal handler for receive request messages 

• For consistency protocol, TreadMarks uses the mprotect system 
call to control access to shared pages. Shared page access 
generates a SIGSEGV signal 

•  
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Homeless and home-based Lazy release 

• Two most popular multiple writer protocols that are 
compatible with LRC 

• TreadMarks protocol(Tmk) 
• Princeton’s homebased protocol(HLRC) 

•Similarity  
In both protocols, modifications to shared pages are 
detected by virtual memory faults(twinning) and 
captured by comparing the page to its own twin 

 
• Differences 

Location where the modifications are kept 
Method by which they get propagated 
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HLRC 

• Shared page is statically assigned a home 
processor by the program 

• At a release, a processor immediately generates 
the diffs for the pages that it has modified since its 
last release 

• Then send the diffs to their home processor. 
Immediately update the home’s copy of the 
message 

• Processor access an invalid page, it sends a 
request to the home processor. Home processor 
always responds with a complete copy of the 
message 28 



Tmk vs HLRC 

• For migratory data, Tmk uses half as many 
messages, because transfer the diff from last writer 
to the next writer 

• For producer/consumer data, the two protocols use 
the same number of messages 

• HLRC uses significantly fewer messages during 
false sharing 

• Assignment of pages to homes is important for 
good performance 

• Tmk creates fewer diffs because their creation is 
delayed 
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Conclusion 

 

• DSM viable solution for large scale because of the combined 
advantages of shared memory and distributed memory 

 

• Very active research area 

 

• With suitable implementation technique distributed shared 
memory can provide efficient platform for parallel computing on 
networked workstations 
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THANK YOU 
Questions? 
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