
 
Distributed Shared Memory 

 
Presented by  

Humayun Arafat 
 
 

1 



Outline 

Background 
 Shared Memory, Distributed memory systems 
Distributed shared memory 
Design 
Implementation 
TreadMarks 
Comparison TreadMarks with Princeton’s home based protocol 
Colclusion 

2 



SM vs DM 

• Shared Memory 
• Global physical memory equally accessible to all 

processors 
• Programming ease and portability 
• Increased contention and longer latencies limit 

scalability 
• Distributed memory 

• Multiple independent processing nodes connected by 
a general interconnection network 

• Scalable, but requires message passing 
• Programmer manages data distribution and 

communication 
 3 



Distributed shared memory 

 
All systems providing a shared-memory abstraction on distributed 
memory system belongs to the DSM category 
 
• DSM system hides remote communication mechanism from 
programmer 
 

• Relatively easy modification and efficient execution of existing 
shared memory system application 
 

• Scalability and cost are similar to the underlying distributed 
system 

4 



 Global Address Space  

• Aggregate distributed memories into global address space 
– Similar to the shared memory paradigm 
– Global address space is logically partitioned 
– Local vs. remote accessible memory 
– Data access via  get(..) and put(..) operations 
– Programmer control over data distribution and locality 

Shared 

G
lo

ba
l 

ad
dr

es
s s

pa
ce

 

Private 

     X[M][M][N] 

X[1..9] 
[1..9][1..9] X 

5 



Global Array 

The Global Arrays (GA) Toolkit is an API for providing a portable 
“shared-memory" programming interface for “distributed-memory" 
computers. 

single, shared data structure/ 
global indexing 
 
e.g., access A(4,3) rather than 
buf(7) on task 2  

Physically distributed data 

Source: GA tutorial 6 



Outline 

Background 
 Shared Memory, Distributed memory systems 
Distributed Shared Memory 
Design 
Implementation 
TreadMarks 
Comparison TreadMarks with home based protocol 
Colclusion 

7 



Key Issues in designing DSM 

 
Three key issues when accessing data in the DSM address space 
 
DSM algorithm:  
 How the access of data actually happens 
Implementation: 
 Implementation level of DSM mechanism 
Consistency:  
 Legal ordering of memory references issued by a processor, 
as observed by other processors 
 

8 



DSM algorithms 

 
Single reader/single writer algorithms 

 
• Prohibits replication, central server algorithm 
• One unique server handles all requests from other nodes to 

shared data 
• Only one copy of data item can exist at one time 
• Improvement- distribution of responsibilities for parts of 

shared address space and static distribution of data 
• Performance is very low 
• Does not use the parallel potential of multiple read or write 
 

9 



DSM algorithms 

 
Multiple reader/single writer algorithms 
 

• Reduce cost of read operations because read is the most used 
pattern in parallel applications 

 
• Only one host can update a copy 
 
• One write will invalidate other replicated copies which 

increases the cost of write operation 
 

10 



DSM algorithms 

 
Multiple reader/Multiple writer algorithms 
 

• Allows replication of data blocks with both read and write 
 
• Cache coherency is difficult to maintain. Updates must be 

distributed to all other copies on remote sites 
 

• Write update protocol 
 

• High coherence traffic 
 

  
 

11 



Implementation of DSM 

Implementation Level 
 One of the most important decisions of implementing DSM 
 Programming , performance and cost depend on the level  
• Hardware 

• Automatic replication of shared data in local memory and cahe 
• Fine grain sharing minimize effects of false sharing 
• Extension of cache coherence scheme of shared memory 
• Hardware DSM is often used in high-end system where performance is 

more important than cost  
• Software 

• Larger grain sizes are typical because of virtual memory 
• Applications with high locality benefit from this 
• Very flexible 
• Performance not comparable with hardware DSM 
 

 
 

12 



Implementation of DSM 

 
• Hybrid 

• Software features are already available in hardware DSM 
 

• Many software solutions require hardware support 
 

• Neither software or hardware has all the advantages 
 

• Use hybrid solutions to balance the cost complexity trade offs 
 

 
 

13 



Memory consistency model 

Consistency 

• Sequential consistency 

• Processor consistency 

• Weak consistency 

• Release consistency 

• Lazy release consistency 

• Entry consistency 

14 



Memory consistency model 

Sequential Consistency 

• Result of any execution is the same as if the read and write 
occurred in the same order by individual processors 

• DSM system serialize all requests in a central server node 

Release Consistency 

• Divides synchronization accesses to acquire and release 

•Read and write can happen after all previous acquires on the 
same processor. Release, after all previous read, write execute 

• acquire and release synchronization accesses must hold 
processor consistency 

 

 

15 



TreadMarks 

• Shared memory as a linear array of bytes via a relaxed 
memory model called release consistency 
 

• Uses virtual memory hardware to detect accesses  
 

• Multiple writer protocol to alleviate problems caused by 
mismatches between page size and application granularity 
 

• Portable, run at user level on Unix machine without kernel 
modifications 

• Synchronizations – locks, barriers 

16 



TreadMarks 

Anatomy of a TreadMarks Program: 
 
Starting remote processes 
Tmk_startup(argc, argv); 
 
Allocating and sharing memory 
shared = (struct shared*) Tmk_Malloc(sizeof(shared)); 
Tmk_distribute(&shared, sizeof(shared)); 
 
Barriers 
Tmk_barrier(0); 
 
 Acquire/Release 
Tmk_lock_acquire(0); 
shared->sum += mySum; 
Tmk_lock_release(0); 17 



 Implementation 

18 



Sample TreadMarks program  

19 



Lazy release consistency 

Release consistency model 

• Synchronization must be used to prevent data races 

•Multiple writer 

•Twin 

•Reduce false sharing 

• Modified pages invalidated at acquire 

• Page updated at access time 

• Updates are transferred as diffs 

• Lazy diffs- make diffs only when they are requested 

  20 



Eager release versus Lazy release  

21 



Multiple writer protocol 

• False sharing handle 

• Buffer written until synchronization 

• Create diffs, run length encoding page modifications 

•Diffs reduce bandwidth requirements 

 

 

22 



False sharing 

23 



 Merge PGAS and CUDA buffer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 



Diff 

25 



TreadMarks  system 

• Implemented as a user-level library on top of Unix 

• Inter-machine communication using UDP/IP through the 
Berkeley socket interface 

• Messages are sent as a result of an call to library routine or page 
fault 

• It uses SIGIO signal handler for receive request messages 

• For consistency protocol, TreadMarks uses the mprotect system 
call to control access to shared pages. Shared page access 
generates a SIGSEGV signal 

•  

26 



Homeless and home-based Lazy release 

• Two most popular multiple writer protocols that are 
compatible with LRC 

• TreadMarks protocol(Tmk) 
• Princeton’s homebased protocol(HLRC) 

•Similarity  
In both protocols, modifications to shared pages are 
detected by virtual memory faults(twinning) and 
captured by comparing the page to its own twin 

 
• Differences 

Location where the modifications are kept 
Method by which they get propagated 

27 



HLRC 

• Shared page is statically assigned a home 
processor by the program 

• At a release, a processor immediately generates 
the diffs for the pages that it has modified since its 
last release 

• Then send the diffs to their home processor. 
Immediately update the home’s copy of the 
message 

• Processor access an invalid page, it sends a 
request to the home processor. Home processor 
always responds with a complete copy of the 
message 28 



Tmk vs HLRC 

• For migratory data, Tmk uses half as many 
messages, because transfer the diff from last writer 
to the next writer 

• For producer/consumer data, the two protocols use 
the same number of messages 

• HLRC uses significantly fewer messages during 
false sharing 

• Assignment of pages to homes is important for 
good performance 

• Tmk creates fewer diffs because their creation is 
delayed 

29 



Conclusion 

 

• DSM viable solution for large scale because of the combined 
advantages of shared memory and distributed memory 

 

• Very active research area 

 

• With suitable implementation technique distributed shared 
memory can provide efficient platform for parallel computing on 
networked workstations 

30 



THANK YOU 
Questions? 

31 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Thank YOU

