
Designing High Performance MPI
Intra-node Communication

Presented by: Pai-Wei Lai

Outline

 Background

 MPI Intra-node Communication

 (4g) Small / large messages design

 (4h) LiMIC

 (4i) Hybrid approach

 Conclusion

Background

MPI intra-node communication

 Network loopback

 User-level shared memory

 Kernel-assisted memory mapping

(1) Network loopback

 Does not distinguish intra-node or inter-node traffic
 Depends on NIC to detect source and destination

 If source and destination are same node, simply loopback
instead of injecting it into network

 Higher latency

(2) User-level shared memory

 Most popular with good performance
 Sending process copies messages into a shared buffer

 Receiving process copies messages out

 Portability
 Does not need kernel help

(3) Kernel-assisted memory mapping

 Take help from OS kernel
 Directly copy messages from sender’s buffer to receiver’s

buffer

 Deploy ‘copy-on-write’ to reduce number of copies

4g

Designing High Performance and Scalable MPI Intra-code
Communication Support for Clusters

- Lei Chai, Albert Hartono, D.K. Panda

Original Design

 Improve (2) based on MVAPICH

 MVAPICH
 MPI implementation over

InfiniBand clusters

 Each pair of processes on the
same node allocate 2 shared
memory buffers between them.

New Design

 Overall Architecture
 P-1 small-sized Receive

Buffers (RBs)

 1 Send Buffer Pool (SBP)

 P-1 Send Queues (SQs)

 Message Transfer Schemes
 Small message

 Large message

Small Message Transfer

 Sender directly access
the receiver’s RB to
write the actual data to
be sent (1)

 Receiver copies the
data from its RB to
local buffer (2)

Large Message Transfer

 Sender:
 Fetch a free cell from SBP,

copies the msg into the free
cell, and marks cell BUSY
(1)

 Enqueue the cell into SQ (2)
 Sends a control msg

including address info of the
cell and write it into
receiver’s RB (3)

 Receiver
 Read control msg (4)
 Directly access the cell in

SQ (5)
 Copies the data to its local

buffer, marks cell FREE (6)

Analysis of Design

 Lock avoidance
 Mark-and-sweep

 Effective cache utilization
 RB are designed for small msg,

the buffer size can be small that
completely fit into cache

 Cell reuse for sender

 Effective memory usage
 Original: P*(P-1)*BufSize

 New: 1 SBP with small P*(P-
1)*RB

Summary

 Distinguish small/large messages and handle them
differently.
 Direct copy for small / control message

 SBP decrease the size of memory usage

 Achieved improved performance on NUMA clusters.

4h

LiMIC: Support for High-Performance MPI Intra-Node
Communication on Linux Cluster

- Hyun-Wook Jin, Sayantan Sur, Lei Chai, D.K. Panda

 Linux kernal module for MPI Intra-node Communication

 Improve (3) based on integration with MVAPICH

LiMIC high level approach

 Traditionally, kernel based
approaches are explored as
an extension to user-level
protocols.

 As a result, most of these
methods have been non-
portable to other user-level
protocols or other MPI
implementations.

LiMIC design

 Runtime loadable module with no modification to the
kernel code

 Major interface functions
 LiMIC_Isend: non-blocking send to a destination with

appropriate message tags
 LiMIC_Irecv: non-blocking receive
 LiMIC_Wait: polls LiMIC completion queue once for incoming

send/receives

 Interface does not include any specific information on
user-level protocol or interconnect

Memory mapping mechanism

MPI Message Matching

 There are separate message queue for msg sent/receive
through kernel module

 Source in the same node
 Receiver request is directly posted into the LiMIC_queue

 Source in a different node
 Not responsible by LiMIC, posted in MPI_queue

 Source in the same node and MPI_ANY_TAGS

 MPI_ANY_SOURCE and MPI_ANY_TAGS
 Receiver request is posted in the MPI_queue
 Check using LiMIC_Iprobe, if same node, call LiMIC receive

Performance Evaluation

Performance Evaluation

Summary

 LiMIC is a stand-alone library that provides MPI-like
interfaces that provides memory mapping and kernel
assisted direct copy

 Performance of LiMIC with MVAPICH reduced latency by
71% and improved bandwidth by 405% for 64kb msg size

4i

Designing An Efficient Kernel-level and User-level Hybrid
Approach for MPI Intra-node Communication on Multi-core
Systems

- Lei Chai, Ping Lai, Hyun-Wook Jin, D.K. Panda

Testbed

Topology

 Step 1: Micro-benchmark analysis
 Shared memory approach: MVAPICH

 Kernel-assisted approach: MVAPICH-LiMIC2

Buffer reuse and cache utilization

Process Skew

 Reason: a send operation cannot complete until the
matching receive completes

 Comparing to LiMIC2, MVAPICH is more skew-tolerant

Hybrid Approach

 Topology aware threshold
 Shared cache : 32KB

 Intra-socket : 2KB

 Inter-socket : 1KB

 Skew aware threshold
 Use shared memory when skew, LiMIC2 otherwise

 Detect skew by keeping track of length of unexpected queue
at receiver side

 If length is larger than some threshold, skew occurs, send
control msg to sender to switch to shared memory

Performance Evaluation

Summary

 Run benchmarks to analyze the advantages and
limitations of shared memory and OS kernel assist

 Proposed topology and skew aware threshold to build an
optimized hybrid approach

 Evaluate the impact of this approach, performance of
MPI collective operations improved by up to 60%,
applications up to 17%

	Designing High Performance MPI Intra-node Communication
	Outline
	Background
	MPI intra-node communication
	(1) Network loopback
	(2) User-level shared memory
	(3) Kernel-assisted memory mapping
	4g
	Original Design
	New Design
	Small Message Transfer
	Large Message Transfer
	Analysis of Design
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Summary
	4h
	LiMIC high level approach
	LiMIC design
	Memory mapping mechanism
	MPI Message Matching
	Performance Evaluation
	Performance Evaluation
	Summary	
	4i
	Testbed
	Topology
	Buffer reuse and cache utilization
	Process Skew
	Hybrid Approach
	Performance Evaluation
	Summary

