
Designing High Performance MPI
Intra-node Communication

Presented by: Pai-Wei Lai

Outline

 Background

 MPI Intra-node Communication

 (4g) Small / large messages design

 (4h) LiMIC

 (4i) Hybrid approach

 Conclusion

Background

MPI intra-node communication

 Network loopback

 User-level shared memory

 Kernel-assisted memory mapping

(1) Network loopback

 Does not distinguish intra-node or inter-node traffic
 Depends on NIC to detect source and destination

 If source and destination are same node, simply loopback
instead of injecting it into network

 Higher latency

(2) User-level shared memory

 Most popular with good performance
 Sending process copies messages into a shared buffer

 Receiving process copies messages out

 Portability
 Does not need kernel help

(3) Kernel-assisted memory mapping

 Take help from OS kernel
 Directly copy messages from sender’s buffer to receiver’s

buffer

 Deploy ‘copy-on-write’ to reduce number of copies

4g

Designing High Performance and Scalable MPI Intra-code
Communication Support for Clusters

- Lei Chai, Albert Hartono, D.K. Panda

Original Design

 Improve (2) based on MVAPICH

 MVAPICH
 MPI implementation over

InfiniBand clusters

 Each pair of processes on the
same node allocate 2 shared
memory buffers between them.

New Design

 Overall Architecture
 P-1 small-sized Receive

Buffers (RBs)

 1 Send Buffer Pool (SBP)

 P-1 Send Queues (SQs)

 Message Transfer Schemes
 Small message

 Large message

Small Message Transfer

 Sender directly access
the receiver’s RB to
write the actual data to
be sent (1)

 Receiver copies the
data from its RB to
local buffer (2)

Large Message Transfer

 Sender:
 Fetch a free cell from SBP,

copies the msg into the free
cell, and marks cell BUSY
(1)

 Enqueue the cell into SQ (2)
 Sends a control msg

including address info of the
cell and write it into
receiver’s RB (3)

 Receiver
 Read control msg (4)
 Directly access the cell in

SQ (5)
 Copies the data to its local

buffer, marks cell FREE (6)

Analysis of Design

 Lock avoidance
 Mark-and-sweep

 Effective cache utilization
 RB are designed for small msg,

the buffer size can be small that
completely fit into cache

 Cell reuse for sender

 Effective memory usage
 Original: P*(P-1)*BufSize

 New: 1 SBP with small P*(P-
1)*RB

﻿

Summary

 Distinguish small/large messages and handle them
differently.
 Direct copy for small / control message

 SBP decrease the size of memory usage

 Achieved improved performance on NUMA clusters.

4h

LiMIC: Support for High-Performance MPI Intra-Node
Communication on Linux Cluster

- Hyun-Wook Jin, Sayantan Sur, Lei Chai, D.K. Panda

 Linux kernal module for MPI Intra-node Communication

 Improve (3) based on integration with MVAPICH

LiMIC high level approach

 Traditionally, kernel based
approaches are explored as
an extension to user-level
protocols.

 As a result, most of these
methods have been non-
portable to other user-level
protocols or other MPI
implementations.

LiMIC design

 Runtime loadable module with no modification to the
kernel code

 Major interface functions
 LiMIC_Isend: non-blocking send to a destination with

appropriate message tags
 LiMIC_Irecv: non-blocking receive
 LiMIC_Wait: polls LiMIC completion queue once for incoming

send/receives

 Interface does not include any specific information on
user-level protocol or interconnect

Memory mapping mechanism

MPI Message Matching

 There are separate message queue for msg sent/receive
through kernel module

 Source in the same node
 Receiver request is directly posted into the LiMIC_queue

 Source in a different node
 Not responsible by LiMIC, posted in MPI_queue

 Source in the same node and MPI_ANY_TAGS

 MPI_ANY_SOURCE and MPI_ANY_TAGS
 Receiver request is posted in the MPI_queue
 Check using LiMIC_Iprobe, if same node, call LiMIC receive

Performance Evaluation

Performance Evaluation

Summary

 LiMIC is a stand-alone library that provides MPI-like
interfaces that provides memory mapping and kernel
assisted direct copy

 Performance of LiMIC with MVAPICH reduced latency by
71% and improved bandwidth by 405% for 64kb msg size

4i

Designing An Efficient Kernel-level and User-level Hybrid
Approach for MPI Intra-node Communication on Multi-core
Systems

- Lei Chai, Ping Lai, Hyun-Wook Jin, D.K. Panda

Testbed

Topology

 Step 1: Micro-benchmark analysis
 Shared memory approach: MVAPICH

 Kernel-assisted approach: MVAPICH-LiMIC2

Buffer reuse and cache utilization

Process Skew

 Reason: a send operation cannot complete until the
matching receive completes

 Comparing to LiMIC2, MVAPICH is more skew-tolerant

Hybrid Approach

 Topology aware threshold
 Shared cache : 32KB

 Intra-socket : 2KB

 Inter-socket : 1KB

 Skew aware threshold
 Use shared memory when skew, LiMIC2 otherwise

 Detect skew by keeping track of length of unexpected queue
at receiver side

 If length is larger than some threshold, skew occurs, send
control msg to sender to switch to shared memory

Performance Evaluation

Summary

 Run benchmarks to analyze the advantages and
limitations of shared memory and OS kernel assist

 Proposed topology and skew aware threshold to build an
optimized hybrid approach

 Evaluate the impact of this approach, performance of
MPI collective operations improved by up to 60%,
applications up to 17%

	Designing High Performance MPI Intra-node Communication
	Outline
	Background
	MPI intra-node communication
	(1) Network loopback
	(2) User-level shared memory
	(3) Kernel-assisted memory mapping
	4g
	Original Design
	New Design
	Small Message Transfer
	Large Message Transfer
	Analysis of Design
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Summary
	4h
	LiMIC high level approach
	LiMIC design
	Memory mapping mechanism
	MPI Message Matching
	Performance Evaluation
	Performance Evaluation
	Summary	
	4i
	Testbed
	Topology
	Buffer reuse and cache utilization
	Process Skew
	Hybrid Approach
	Performance Evaluation
	Summary

