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Background 



MPI intra-node communication 

 Network loopback 

 User-level shared memory 

 Kernel-assisted memory mapping 



(1) Network loopback 

 Does not distinguish intra-node or inter-node traffic 
 Depends on NIC to detect source and destination 

 If  source and destination are same node, simply loopback 
instead of  injecting it into network 

 Higher latency 



(2) User-level shared memory 

 Most popular with good performance 
 Sending process copies messages into a shared buffer 

 Receiving process copies messages out 

 Portability 
 Does not need kernel help 



(3) Kernel-assisted memory mapping 

 Take help from OS kernel 
 Directly copy messages from sender’s buffer to receiver’s 

buffer 

 Deploy ‘copy-on-write’ to reduce number of  copies 

 



4g 

Designing High Performance and Scalable MPI Intra-code 
Communication Support for Clusters 

- Lei Chai, Albert Hartono, D.K. Panda 



Original Design 

 Improve (2) based on MVAPICH 

 MVAPICH 
 MPI implementation over 

InfiniBand clusters 

 Each pair of  processes on the 
same node allocate 2 shared 
memory buffers between them. 



New Design 

 Overall Architecture 
 P-1 small-sized Receive 

Buffers (RBs) 

 1 Send Buffer Pool (SBP) 

 P-1 Send Queues (SQs) 

 Message Transfer Schemes 
 Small message 

 Large message 

 



Small Message Transfer 

 Sender directly access 
the receiver’s RB to 
write the actual data to 
be sent (1) 

 Receiver copies the 
data from its RB to 
local buffer (2) 



Large Message Transfer 

 Sender: 
 Fetch a free cell from SBP, 

copies the msg into the free 
cell, and marks cell BUSY 
(1) 

 Enqueue the cell into SQ (2) 
 Sends a control msg 

including address info of  the 
cell and write it into 
receiver’s RB (3) 

 Receiver 
 Read control msg (4) 
 Directly access the cell in 

SQ (5) 
 Copies the data to its local 

buffer, marks cell FREE (6) 
 



Analysis of  Design 

 Lock avoidance 
 Mark-and-sweep 

 Effective cache utilization 
 RB are designed for small msg, 

the buffer size can be small that 
completely fit into cache 

 Cell reuse for sender 

 Effective memory usage 
 Original: P*(P-1)*BufSize 

 New: 1 SBP with small P*(P-
1)*RB 

 



﻿ 







Summary 

 Distinguish small/large messages and handle them 
differently. 
 Direct copy for small / control message 

 SBP decrease the size of  memory usage 

 Achieved improved performance on NUMA clusters. 
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LiMIC: Support for High-Performance MPI Intra-Node 
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 Linux kernal module for MPI Intra-node Communication 

 Improve (3) based on integration with MVAPICH 

 

 



LiMIC high level approach 

 Traditionally, kernel based 
approaches are explored as 
an extension to user-level 
protocols. 

 As a result, most of  these 
methods have been non-
portable to other user-level 
protocols or other MPI 
implementations. 



LiMIC design 

 Runtime loadable module with no modification to the 
kernel code 

 Major interface functions 
 LiMIC_Isend: non-blocking send to a destination with 

appropriate message tags 
 LiMIC_Irecv: non-blocking receive 
 LiMIC_Wait: polls LiMIC completion queue once for incoming 

send/receives 

 Interface does not include any specific information on 
user-level protocol or interconnect 

 

 



Memory mapping mechanism 



MPI Message Matching 

 There are separate message queue for msg sent/receive 
through kernel module 

 Source in the same node 
 Receiver request is directly posted into the LiMIC_queue  

 Source in a different node 
 Not responsible by LiMIC, posted in MPI_queue 

 Source in the same node and MPI_ANY_TAGS 

 MPI_ANY_SOURCE and MPI_ANY_TAGS 
 Receiver request is posted in the MPI_queue 
 Check using LiMIC_Iprobe, if  same node, call LiMIC receive 



Performance Evaluation 



Performance Evaluation 



Summary  

 LiMIC is a stand-alone library that provides MPI-like 
interfaces that provides memory mapping and kernel 
assisted direct copy 

 Performance of  LiMIC with MVAPICH reduced latency by 
71% and improved bandwidth by 405% for 64kb msg size 
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Testbed 



Topology 

 Step 1: Micro-benchmark analysis 
 Shared memory approach: MVAPICH 

 Kernel-assisted approach: MVAPICH-LiMIC2 

 



Buffer reuse and cache utilization 



Process Skew 

 Reason: a send operation cannot complete until the 
matching receive completes 

 Comparing to LiMIC2, MVAPICH is more skew-tolerant 

 



Hybrid Approach 

 Topology aware threshold 
 Shared cache : 32KB 

 Intra-socket : 2KB 

 Inter-socket : 1KB 

 Skew aware threshold 
 Use shared memory when skew, LiMIC2 otherwise 

 Detect skew by keeping track of  length of  unexpected queue 
at receiver side 

 If  length is larger than some threshold, skew occurs, send 
control msg to sender to switch to shared memory 



Performance Evaluation 



Summary 

 Run benchmarks to analyze the advantages and 
limitations of  shared memory and OS kernel assist 

 Proposed topology and skew aware threshold to build an 
optimized hybrid approach 

 Evaluate the impact of  this approach, performance of  
MPI collective operations improved by up to 60%, 
applications up to 17% 
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