Tentative Class Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Readings from Text</th>
</tr>
</thead>
</table>
| Sept 22 | Introduction; Course Overview
Technology Trends | 1.1–1.3 |
| Sept 27 | Cost, Performance & Dependability
Quantitative Principles of Computer Design
Reading Assignment
Classifying Instruction Set Architectures and Features | 1.4–1.8
1.9
1.10–1.11
B.1–B.7 |
| Oct 4 | Role of Compilers and MIPS Architecture
Basic Pipelining
Hw#1 due (Oct 6) | B.8–B.9
A.1 |
| Oct 11 | Data and Control Hazards
Pipelining Implementations and Multicycle operations | A.2
A.3–A.4 |
| Oct 18 | Multicycle operations
Hw#2 due (Oct 18) | A.5 |
| Oct 25 | MIPS R4000 pipeline
Crosscutting Issues in Pipelining
MIDTERM (Oct 27) | A.6
A.7 |
| Nov 1 | Instructional-Level Parallelism
Dynamic Scheduling and Branch Prediction
Lab#1 due (Nov 3) | 2.1–2.2
2.3–2.5
Lab#1 due (Nov 3) |
| Nov 8 | Hardware-based Speculation
Advanced Techniques | 2.6–2.7
2.8–2.10 |
| Nov 15 | Memory-Hierarchy Design and Caches
Cache Optimizations
Hw#3 due (Nov 15) | C.1, C.2 and 5.1
C.3 and 5.2
Hw#3 due (Nov 15) |
| Nov 22 | Virtual Memory
Main Memory Design Issues
Lab#2 due (Nov 22) | C.4
5.3 |
| Nov 29 | Overview of Interconnection Networks
Overview of Multiprocessing
Overview of Latest Multicore Processors
Hw#4 due (Dec 1)
FINAL Exam (Dec 6) | Appendix E
4.1
Lab#2 due (Nov 22)
Hw#4 due (Dec 1)
FINAL Exam (Dec 6) |