BlueGene/L

Hardware Architecture Overview

BlueGene/L design team
IBM Research
BG/L Hardware Architecture - October 2003

- Ruud Haring: BlueGene/L Compute Chip Overview
- Dirk Hoenicke: BLC chip microarchitecture, networks & performance
- Gerry Kopcsay: Power, Packaging, Cooling
Blue Gene/L Partners

Joint Partnership between IBM and Tri-Lab (Lawrence Livermore, Los Alamos, Sandia) ASCI Community.

External Collaborations

- Argonne National Lab
- Barcelona
- Boston University
- Caltech
- Columbia University
- National Center for Atmospheric Research
- Oak Ridge National Lab
- San Diego Supercomputing Center
- Stanford
- Technical University of Vienna
- Trinity College Dublin
- Universidad Politecnica de Valencia
- University of New Mexico
- University of Edinburgh
- University of Maryland
What is BG/L

- A 64k node highly integrated supercomputer based on system-on-a-chip technology.
 - Two ASICs:
 - BlueGene/L Compute (BLC)
 - BlueGene/L Link (BLL)
- Focus is on numerically intensive scientific problems.
- 180-360 TFlop peak performance.
- Strategic partnership with LLNL.
 - Validation and optimization of architecture based on real applications
 - Accustomed to "new architectures" and will work hard to adapt to constraints.
 - Assist us in the investigation of the reach of this machine
- Grand challenge science stress
 - I/O, memory (bandwidth, size and latency), and processing power.
Brief History

· QCDSP (600GF based on Texas Instruments DSP C31)
 - Gordon Bell Prize for Most Cost Effective Supercomputer in '98
 - Columbia University Designed and Built
 - Optimized for Quantum Chromodynamics (QCD)
 - 12,000 50MF Processors
 - Commodity 2MB DRAM

· QCDOC (20TF based on IBM System-on-a-Chip)
 - Collaboration between Columbia University and IBM Research
 - Optimized for QCD
 - IBM 7SF Technology (ASIC Foundry Technology)
 - 20,000 1GF processors (nominal)
 - 4MB Embedded DRAM + External Commodity DDR/SDR SDRAM

· Blue Gene/L (180/360 TF based on IBM System-on-a-Chip)
 - Designed by IBM Research in IBM CU-11 Technology
 - 64,000 2.8GF dual processors (nominal)
 - 4MB Embedded DRAM + External Commodity DDR SDRAM
Cost/Performance

- BlueGene/L is cost/performance optimized for a wide class of parallel applications.

Cost
- Machine
- Facilities
- Hardware Support and Maintenance
- Software Support
 - system
 - application

Performance
- Peak speed
- Scaleability
- Availability
- Useability
 - tools, debuggers, performance analysis
 - compilers, libraries, frameworks

- power is the dominant factor
BG/L Project Motivation

- System on-a-chip offers tremendous cost/performance advantages.
 - Power, Size, Complexity, Design Effort
 - Allows for low latency, high bandwidth memory system

- Scalability of applications to ~100k processors is important research with potentially great payoff.

- Some special purpose machines have had tremendous success using massively parallel.

- Some algorithms are currently scaling to ~thousands of processors
BlueGene/L

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board
(32 chips, 4x4x2)
16 Compute Cards

Compute Card
(2 chips, 2x1x1)

Chip
(2 processors)

- 2.8/5.6 GF/s
- 5.6/11.2 GF/s
- 90/180 GF/s
- 2.9/5.7 TF/s
- 180/360 TF/s

- 4 MB
- 8 GB DDR
- 256 GB DDR
- 16 TB DDR

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR
BlueGene/L Compute ASIC

- **PLB (4:1)**
 - 32k/32k L1
 - 440 CPU
 - I/O proc
 - "Double FPU"

- **L2**
 - 256
 - Snoop

- **Multiported Shared SRAM Buffer**
 - 256

- **Shared L3 directory for EDRAM**
 - Includes ECC

- **4MB EDRAM**
 - L3 Cache or Memory

- **32k/32k L1**
 - 128

- **440 CPU**
 - 6 out and 6 in, each at 1.4 Gbit/s link

- **JTAG Access**
 - Gbit
 - Ethernet

- **Torus**
 - 3 out and 3 in, each at 2.8 Gbit/s link

- **Tree**
 - 4 global barriers or interrupts

- **Global Interrupt**
 - 144 bit wide DDR 256MB

- **Ethernet Gbit**
 - JTAG

- **DDR Control with ECC**
 - 1024+ 144 ECC

10/17/2003
System designed for high reliability

- **BLC ASIC**
 - All SRAMs in are ECC protected -- except L1 caches in PPC440 and Ethernet
 - L1 caches in 440 cores are parity protected with multiple operating modes
 - Most internal busses have parity detection
 - eDRAM is ECC protected
 - Controller for external DRAM supports memory scrub and ECC with nibble kill reliability. Bit sparing allows for swapping in spare nibble for further reliability.
 - All error types can be counted and used for predictive failure analysis

- **Networks:**
 - 24 packet CRC + 32 bit “static” CRC
 - Hardware retry for all CRC fails. – Never seen an escape through protocol
 - Optional error injection allows for aggressive testing of link protocol coverage
 - Links are temperature and voltage compensating

- **Hardware support for fault isolation**
 - Can determine first node that generates a non-repeatable computation in a deterministic calculation

- **Redundancy in power, cooling and cabling**
The BG/L Networks

3 Dimensional Torus
 - Point-to-point

Global Tree
 - Global Operations

Global Barriers and Interrupts
 - Low Latency Barriers and Interrupts

Gbit Ethernet
 - File I/O and Host Interface

Control Network
 - Boot, Monitoring and Diagnostics
Floor plan
System-on-a-Chip

- IBM Cu-11 (0.13 µm technology) ASIC with:
 - hard cores -- dual (PPC440 + double FPU), PLL
 - soft cores -- Ethernet/DMA sub-system
 - custom I/O books for high speed signaling
 - eDRAM (32 Mb/chip)
 - SRAM (~2 Mb/chip), fuses, ECID

- “Custom design” twist: bitstacks
 - guided placement, auto wiring
 - critical for high speed send/capture of serialized Torus/Tree
 - far exceeds "normal" ASIC speeds -- up to 1.4 GHz clock.
 - Organizes wiring congestion at wide eDRAM ports

- IBM E&TS (Rochester, MN) style PD and test
 - careful clock design -- about 90 clock signals; 30 clock sub-domains
 - JTAG-based co-processor for in-system test/bring-up
Physical Design
Prototype Bring-Up

- BLC DD1.0 Power-On on 06/16/2003

- Presently (10/10) > 600 chips running in various test stations
 - 1,2,8,32,128, 256, 512-ways
 - running anything from low level tests to applications to benchmarks
 - No show stoppers found.

- The hardware works! Pace of bring-up limited by s/w and resources.
 - Outlook is good to do DD2.0 RIT in November

- BLC DD2.0 (production version):
 - No major functional difference
 - Better frequency
 - Improvements for robustness, diagnostics, error recovery.
Control Network

Service Processor:
100Mb Ethernet to JTAG interface

- Direct access to any node
 - Partitioning
 - Configuration
- Direct access to shared SRAM in every node
 - boot-up code
 - messaging node <-> service processor
- In-system debug facilities
- Runtime noninvasive RAS support.
- Non-invasive access to performance counters
Logic design

- Architect: Alan Gara
- Hummer2: Chuck Wait + team
- L2: Dirk Hoenicke, Martin Ohmacht
- L3, SRAM, Lockbox: Martin Ohmacht
- DDR controller: Jim Marcella
- Torus: Dong Chen, Pavlos Vranas, Sarabjeet Singh
- Tree: Dirk Hoenicke, Matt Blumrich
- High Speed Serial Comm: Alan Gara, Dong Chen, Sarabjeet Singh
- Global Interrupts: Dong Chen, Alan Gara
- EMAC4/PLB/DCR/BIC: Martin Ohmacht
- Performance Counters: Dirk Hoenicke
- Clock Tree: Matt Ellavsky
- Test & Bring-up structures: Marc Dombrowa, Ruud Haring, Steve Douskey, Mike Hamilton, Jim Marcella
- IOs: Ruud Haring
- Logic integration: Martin Ohmacht, Marc Dombrowa
- Libraries: Dan Beece
Logic verification

- Team lead: Alan Gara
- Stage releases: Martin Ohmacht
- Model build, infrastructure: Dan Beece, Ruud Haring, Sandy Woodward + team
- Regression: Lurng-Kuo Liu

- Hummer2: Chuck Wait + team
- Memory sub-system: Ben Nathanson, Brett Tremaine, Mike Wazlowski, Li Shang + designers
- Torus: Phil Heidelberger, Mike Wazlowski + designers
- Tree: Burkhard Steinmacher, Brett Tremaine + designers
- Tree Formal: Dirk Hoenicke, Steve German, Chris Zoellin
- High Speed Serial Comm: Gerry Kopcsay, Minhua Lu
- Global Interrupts: Lurng-Kuo Liu
- Ethernet: Valentina Salapura, Jose Brunheroto
- IPL & Bring-up: Marc Dombrowa, Ralph Bellofatto, Dong Chen, Martin Ohmacht
- Test structures: Steve Douskey + team
- Directed test cases: Krishna Desai + team (Bangalore)
Floor planning, synthesis, timing, DFT

- Team leads: Ruud Haring, Greg Ulsh, Fariba Kasemkhani
- Floor Planning: Terry Bright
- IO assignments: Ruud Haring
- Clocks: Matt Ellavsky
- Synthesis & pre-PD timing: Terry Bright, Jim Marcella, Chris Zoellin, Dirk Hoenicke, Martin Ohmacht, Marc Dombrowa, Sarabjeet Singh
- Synthesis & timing support: Gay Eastman, Scott Mack + team
- Design for Testability: Marc Dombrowa
- AC test / AC-Lite: Ruud Haring
Physical Design

- Team lead: Bob Lembach
- Bit stacks: Terry Bright
- Interface, ECO coordination: Jim Marcella
- Clock Tree: Matt Ellavsky, Bruce Rudolph, Sean Evans
- Physical Design: Mike Rohn, Cory Wood, Bruce Winter + others

- post-PD timing closure: Jim Marcella, Todd Greenfield + team
- Verity: Jim Marcella, Terry Bright

IBM Microelectronics

- Interface: Scott Bancroft
- CDS, RFQ: Terry Bright, Ruud Haring, Greg Ulsh, Paul Coteus, Mike Shapiro (IMD Austin)
- AEs: Glen Smith (IMD RTP), Kurt Carlsen (IMD BtV)
-