Chapter 6

Warehouse-Scale Computers to Exploit Request-Level and Data-Level Parallelism:
Introduction

- **Warehouse-scale computer (WSC)**
 - Provides Internet services
 - Search, social networking, online maps, video sharing, online shopping, email, cloud computing, etc.
 - Differences with HPC “clusters”:
 - Clusters have higher performance processors and network
 - Clusters emphasize thread-level parallelism, WSCs emphasize request-level parallelism
 - Differences with datacenters:
 - Datacenters consolidate different machines and software into one location
 - Datacenters emphasize virtual machines and hardware heterogeneity in order to serve varied customers
Introduction

Important design factors for WSC:
- Cost-performance
 - Small savings add up
- Energy efficiency
 - Affects power distribution and cooling
 - Work per joule
- Dependability via redundancy
- Network I/O
- Interactive and batch processing workloads
- Ample computational parallelism is not important
 - Most jobs are totally independent
 - "Request-level parallelism"
- Operational costs count
 - Power consumption is a primary, not secondary, constraint when designing system
- Scale and its opportunities and problems
 - Can afford to build customized systems since WSC require volume purchase
Prgrm’g Models and Workloads

Batch processing framework: MapReduce

Map: applies a programmer-supplied function to each logical input record
- Runs on thousands of computers
- Provides new set of key-value pairs as intermediate values

Reduce: collapses values using another programmer-supplied function
Example:

map (String key, String value):
- // key: document name
- // value: document contents
- for each word w in value
 - EmitIntermediate(w,"1"); // Produce list of all words

reduce (String key, Iterator values):
- // key: a word
- // value: a list of counts
- int result = 0;
- for each v in values:
 - result += ParseInt(v); // get integer from key-value pair
 - Emit(AsString(result));
Prgrm’g Models and Workloads

- MapReduce runtime environment schedules map and reduce task to WSC nodes

- Availability:
 - Use replicas of data across different servers
 - Use relaxed consistency:
 - No need for all replicas to always agree

- Workload demands
 - Often vary considerably
WSC often use a hierarchy of networks for interconnection

Each 19” rack holds 48 1U servers connected to a rack switch

Rack switches are uplinked to switch higher in hierarchy

- Uplink has $48 / n$ times lower bandwidth, where $n = \#$ of uplink ports
 - “Oversubscription”

Goal is to maximize locality of communication relative to the rack
Storage

- Storage options:
 - Use disks inside the servers, or
 - Network attached storage through Infiniband

- WSCs generally rely on local disks
- Google File System (GFS) uses local disks and maintains at least three replicas
Array Switch

- Switch that connects an array of racks
 - Array switch should have 10 X the bisection bandwidth of rack switch
 - Cost of n-port switch grows as n^2
 - Often utilize content addressable memory chips and FPGAs
WSC Memory Hierarchy

- Servers can access DRAM and disks on other servers using a NUMA-style interface

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Rack</th>
<th>Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM latency (μs)</td>
<td>0.1</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Disk latency (μs)</td>
<td>10,000</td>
<td>11,000</td>
<td>12,000</td>
</tr>
<tr>
<td>DRAM bandwidth (MB/sec)</td>
<td>20,000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Disk bandwidth (MB/sec)</td>
<td>200</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>DRAM capacity (GB)</td>
<td>16</td>
<td>1,040</td>
<td>31,200</td>
</tr>
<tr>
<td>Disk capacity (GB)</td>
<td>2000</td>
<td>160,000</td>
<td>4,800,000</td>
</tr>
</tbody>
</table>
Infrastructure and Costs of WSC

- **Location of WSC**
 - Proximity to Internet backbones, electricity cost, property tax rates, low risk from earthquakes, floods, and hurricanes

- **Power distribution**
Infrastructure and Costs of WSC

- **Cooling**
 - Air conditioning used to cool server room
 - 64°F – 71°F
 - Keep temperature higher (closer to 71°F)
 - Cooling towers can also be used
 - Minimum temperature is “wet bulb temperature”
Infrastructure and Costs of WSC

- Cooling system also uses water (evaporation and spills)
 - E.g. 70,000 to 200,000 gallons per day for an 8 MW facility

- Power cost breakdown:
 - Chillers: 30-50% of the power used by the IT equipment
 - Air conditioning: 10-20% of the IT power, mostly due to fans

- How man servers can a WSC support?
 - Each server:
 - “Nameplate power rating” gives maximum power consumption
 - To get actual, measure power under actual workloads
 - Oversubscribe cumulative server power by 40%, but monitor power closely
Measuring Efficiency of a WSC

- **Power Utilization Effectiveness (PEU)**
 - $\text{PEU} = \frac{\text{Total facility power}}{\text{IT equipment power}}$
 - Median PUE on 2006 study was 1.69

- **Performance**
 - Latency is important metric because it is seen by users
 - Bing study: users will use search less as response time increases
 - Service Level Objectives (SLOs)/Service Level Agreements (SLAs)
 - E.g. 99% of requests be below 100 ms
Cost of a WSC

- Capital expenditures (CAPEX)
 - Cost to build a WSC

- Operational expenditures (OPEX)
 - Cost to operate a WSC
Cloud Computing

- WSCs offer economies of scale that cannot be achieved with a datacenter:
 - 5.7 times reduction in storage costs
 - 7.1 times reduction in administrative costs
 - 7.3 times reduction in networking costs
- This has given rise to cloud services such as Amazon Web Services
 - “Utility Computing”
 - Based on using open source virtual machine and operating system software