
On the Specification, Inheritance, and Verification of
Synchronization Constraints

Neelam Soundarajan

Computer and Information Science
The Ohio State University

Columbus, OH 43210
USA

e-mail: neelam@cis.ohio-state.edu

Abstract: Object-orientation and distributed systems are a natural match. Objects
correspond to processes in a distributed program; the invocation of a method of
one object by another object corresponds naturally to a message being passed be-
tween the corresponding processes in the distributed program. Despite this close
correspondence, progress in developing an OO approach to concurrency has been
limited. One important problem has been the so-calledinheritance anomalywhich
is concerned withhowandhow easilysynchronization constraints specified in a
base class may be modified in a derived class. Our concern in the current paper
is slightly different. We are interested in developing ways to abstractlyspecify
these synchronization constraints, and ways toverify them especially when the
constraints are inherited from a base class and modified in the derived class using
one of the various mechanisms that have been proposed in the literature dealing
with the inheritance anomaly issue. In other words we are interested inwhatthese
synchronization constraints do, and this is, of course, the critical question from
the point of view of the users of these objects. We use the mechanism ofaccep-
tance setsin our specifications. We develop a proof method to verify that (base as
well as derived) classes meet their specifications. We also consider the question of
what kinds of modifications of synchronization constraints in the derived classes
are easy for the clients of the class to deal with.

1

1 Introduction

Object-orientation (OO) and distributed systems are a natural match. Active, au-
tonomous objects correspond naturally to processes in a distributed program. In-
teractions between these objects in the form of messages, i.e., method invocations
to carry out various tasks, correspond to interactions between the processes. Since
individual objects do not have access to the internals of other objects, they can
exist on separate machines with no shared memory. Despite this close correspon-
dence, progress in using OO ideas in distributed systems has been slow.

Inheritanceis one of the cornerstones of the object-oriented approach. It not
only allows us to create classes in an incremental manner from existing classes,
but also, in conjunction with polymorphism and dynamic dispatch, makes it possi-
ble to write very flexible client code that can manipulate objects that are instances
of different but conceptually related classes in a uniform manner. Although some
authors have criticized inheritance, others like Meyer [16] have presented persua-
sive arguments in its favor.

One of the problems in applying OO ideas to concurrent programming is the
inheritance anomaly[MandY]. To see the problem, consider the classic example
of a bounded-bufferclass. The problem arises because the code that is needed to
ensure that appropriate synchronization constraints (such as not reading from an
empty buffer, or not writing to a full buffer) is often interspersed with the code of
the methods (such asgetandput); as a result, if we attempt to develop a derived
class, for example abetter-bufferclass that provides an additional operationget2
that allows us to read two elements from the buffer, we may be required not only
to provide the code for this additional operation, but also to rewrite the code of
some of the existing operations to take account of appropriately synchronizing
with the new operation. In other words, although the code forperforming the
existing operations,get andput in the case of thebounded-bufferclass, has not
changed –indeed that is the reason we are trying to use inheritance andreuse
these operations defined in the base class– we are obliged to rewrite them anyway
in order to encode the new synchronization conditions needed in view of the new
operation. Various notations have been proposed to solve this problem, and we
will consider some of them later in the paper.1

1[MandY] consider various schemes that have been proposed to specify the constraints and for
each scheme present an example that forces us revisit the code in the base class because of the way
in which the synchronization constraints are expressed.

2

Our interest in the current paper is somewhat different. From the point of view
of the client of the class(es), the important question is not how the classes are
constructed, but how they can be used. To serve this purpose, we need formal and
abstract specifications of both the functional properties of the various operations
provided by the classes, as well as their synchronization properties. Further, we
need appropriate axioms and proof rules that can be used by the class designers
to establish that the operations, either inherited from the base class, or defined
or redefined in the derived class, do indeed meet these specifications. We de-
velop a simple notation for expressing such specifications, and develop a method
for showing that classes do meet their specifications. While object-oriented dis-
tributed systems can be expected to be easier to design and understand than non-
OO systems, easy-to-use specification notations and verification methods of the
kind developed in this paper are important to ensure that the resulting systems are
reliable and behave as they are intended to.

Inheritance anomaly which is essentially a problem with how synchronization
constraints are implemented in certain classes, has a counterpart in the specifica-
tion/verification task. Indeed there it appears even in the absence of synchroniza-
tion issues. The problem arises because an operation defined in a derived class
may modify base class member variables. As a result, the derived class designer
may be forced to reverify all of the base class operations, including those that
are not redefined in the derived class, since these operations also use the same
variables. We have developed a formal approach in [Ecoop97] to simplify this
task; the key idea behind the approach in [Ecoop97] is to havetwo formal mod-
els of the (base) class. The first is the usual, abstract model for use by the client
of the class. The second, for use by the designer of the derived class, is acon-
cretemodel in which operations of the (base) class are specified in terms of pre-
and post-conditions on theactualdata structures used in the representation, rather
than in terms of an abstract math model. As a result, the derived class designer
only needs to ensure that when an operation defined (or redefined) in the derived
class finishes, the values of the various member variables including those inher-
ited from the base class are acceptable to the operation that might be next invoked,
according to the concrete pre-conditions of the various operations. The formalism
we develop in the current paper is a natural extension of that in [Ecoop97]. Each
class will have two specifications associated with it, anabstract specificationfor
use by a client of the class, and aconcrete specificationfor use by a derived class
designer. Each specification will give us information about the functionality, i.e.,
input-output behavior of each operation in the class, and about the synchroniza-

3

tion constraints, i.e., what operations may be invoked at various points during the
execution of the program.

In the next section of the paper we introduce our specification notation by
means of a few simple examples. In the third section we present our proof system
using which we will be able to establish that a given class meets its specifications.
One important point to note is that our specification notation as well as the gen-
eral method of verifying that a given class meets its specifications is applicable to
the various (programming) notations that have been proposed in the literature. Of
course the details of our proof rules will have to be . . .

In the fourth section we use our approach to specify and verify some simple
classes. In the final section we summarize our work, and address the question of
what types of . . .

2 Abstract and Concrete Specifications

Consider a classC with public methodsm1, . . . ,mn. (We will generally use C++-
like terminology and notation.) As mentioned in the introduction, we will asso-
ciate two specifications withC, anabstract specificationfor use by a client ofC,
and aconcrete specificationfor use by designers of derived classes ofC. Let us
first consider the abstract specification. A client ofC will need, first, the pre- and
post-conditions of eachmi in terms of an abstract model ofC.2 Second, the client
must be able to tell at what points in the execution of the system the various meth-
ods ofC may be invoked. The most direct way of specifying this information is
in terms of the value of theacceptance set, i.e., the set of methods that will accept
calls at the point in question. This specification could be provided in the form of
a function over thetrace or sequence of calls made so far to the various meth-
ods ofC. In other words, we could specify a functionA whose valueA(t) for
any given tracet is the subset of methods{m1, . . . , mn} that can be invoked at a
given point if the sequence of methods that have been invoked thus far ist. While
this approach would allow us to handle all types of synchronization schemes, it
is usually more than is needed. A simpler approach would be to specify asyn-

2We could also specify some of the functionality of the methods ofC in terms of an invariant
of C. We will use invariants but, as we will see shortly, for specifying synchronization properties.
We should also note that our examples will be ‘light’ on computation and focus more heavily on
synchronization aspects.

4

chronization invariantSC that imposes appropriate restrictions on the value of the
acceptance setA in terms of the abstract model ofC, and this is the approach we
will use.

Let us consider the following classBbuffer , the standardbounded-buffer
example:

class Bbuffer {
// Buffer of size n
public:

Bbuffer();
void put(int k);
int get();

protected:
...

};

A simple abstract modelMBbuffer for this class would just be a sequence
of integers with initial value the empty sequence〈〉. Theput operation would ap-
pend its argument to the current value of the sequence; theget operation would
return the first element of the sequence as its return value and remove this element
from the sequence. Thus in terms of pre- and post-conditions the abstract specifi-
cation of the class is:

{ true} put(k) { selfa = #selfaˆk }
{ true} get() { value= head(#selfa) ∧ selfa = tail(#selfa) }

whereselfa is the abstract bounded buffer object,valuedenotes the value returned
by the operation under consideration;ˆ is theappendoperation,head, andtail are
the usual functions on sequences.# denotes the value of the variable that follows
the# at the start of the operation in question.

Note that the pre-conditions of the operations aretrue rather than that there
must be space in the buffer, or that the buffer must be non-empty respectively.
That is because these conditions are part of the synchronization constraints, rather
than the pre-conditions of the respective operations. If we had included these
conditions as part of the pre-conditions, then that would mean that if the client
were to invoke, say, theget operation when the buffer was empty, the (class)
would be at liberty to do anything (such as returning a random value) since its
pre-condition would not have been satisfied. By expressing the condition as part
of the synchronization constraint, the client is assured that in this circumstance,

5

the call will (or rathermay) be suspended, to be resumed when the appropriate
synchronization constraint is satisfied.3

So next we need to specify the (abstract) synchronization invariant
ASBbuffer which will capture these synchronization constraints:

ASBbuffer = [(selfa 6= 〈〉 ⇒ get ∈ ABbuffer)
∧ (|self| < n⇒ put ∈ ABbuffer)]

whereABbuffer is theacceptance setof Bbuffer , i.e. the set of all methods
of Bbuffer that can currently be invoked.ASBbuffer essentially states that
the methodget can be invoked if the buffer is not empty, and thatput can be
invoked if the buffer is not full.

Next, consider theconcrete specificationof a classC. While the abstract spec-
ification ofC gives us information about the functionality of each method and the
synchronization properties of the various methods ofC in terms of its abstract
model, the concrete specification of the class will provide us with similar infor-
mation in terms of theinternal representation, i.e., the actual data members ofC.
The client of the class of course has no use for this information since she has no
direct access to the data members of the class. (We are assuming here, following
widely accepted principles of OO design, that no data members of a class are de-
claredpublic .) But a designer of a class that inherits fromC is in acute need of
this information. Without this information that designer would be forced to study
the actual code of the various operations ofC to understand how they operate on
the various data members, as well as the synchronization code to see what condi-
tions the values of the data members must satisfy in order for specific operations
to be enabled. It is only then that this designer will be able to ensure that the new
operations that she introduces in the derived class, as well as redefinitions that she
makes of operations inherited from the base class, are consistent with the design
of the base class. Our concrete specification forC will provide this information
in the form of pre- and post-conditions on the actual data members for each oper-
ation ofC and a synchronization invariant, again on the data members. We will
term these pre- and post-conditions and the invariant ‘concrete’ in order to dis-
tinguish from their abstract counterparts of the abstract specification. Thus the
concrete specification ofC will contain more information than its abstract spec-

3The constraint may become satisfied at a later time since another –concurrent– client that
shares this buffer might invoke theput operation, after the execution of which the buffer will no
longer be empty. In this paper we will not worry about what the client code looks like, including
the question of how concurrent clients might be implemented.

6

ification, but the details of the actual code bodies of the various operations ofC
will be abstracted away. That is the big advantage for the derived class designer;
she needs to deal only with the concrete specification ofC, not the actual code.4

Consider again theBbuffer class. Suppose we use an arrayElems[0:n-1]
to store the elements currently in the buffer, and two variablesin andout as
pointers into this array to indicate where the next element added to the buffer
must be stored, and where the next element read from the buffer should be fetched
from. Thus the protected part of the class would look like:

protected:
int Elems[n];
int in, out;

The constructor function of the class will simply initializein andout to 0. The
operationsput andget will store elements into the buffer and return elements
from the buffer using theElems array as a ‘circular’ array, i.e., increasing, mod-
ulo n, the appropriatein or out pointer by 1.

Thus the concrete pre- and post-conditions of these operations are:

{ true} put(k) { in = #in ⊕ 1 ∧ Elems = #Elems [#in ← t] }
{ true} get() { value= #Elems [#out] ∧ out = #out ⊕ 1 }

where the post-condition ofput asserts that the value ofElems whenput fin-
ishes is the same as when it started except the value ofElems[#in] is k .

As in the case of the abstract specification, the pre-conditions of the operations
are justtrue. The requirements of a non-empty buffer forget and a non-full
buffer forput are part of the concrete synchronization invariant:

CSBbuffer = [(in 6= out ⊕ 1⇒ put ∈ CABbuffer)
∧ (out 6= in ⇒ gett ∈ CABbuffer)]

where we have usedCABbuffer to denote the concrete acceptance set of
Bbuffer , although in fact there is no difference between the concrete and ab-
stract acceptance sets.

So far we have only considered the specifications for the class. We still need
to verify that the class, as actually implemented, meets these specifications. This
verification method is the topic of the next section. Once that is done though,

4In this paper we will assume that all data members areprotected , there being noprivate
variables. Recall thatprivate variables would not be accessible even in the derived class. In
[Ecoop97] we explain how we can deal with both kinds of variables.

7

neither the client of the class nor the designer of the derived class would have to
look at this actual implementation.

3 Verification of Class Behavior

The verification task may be divided into two parts. First, we need to verify that
the class operations and synchronization requirements as actually implemented,
meet the concrete specification of the class. Second, that the concrete specification
in some precise sense implies the abstract specification.

Let us consider the second part first. For this part we must first define an
abstraction functionε that maps the concrete state to the abstract state. Note
that since the abstract acceptance setAA is the same as the concrete oneCA,
ε will map CA to AA. Next let us introduce some conventions. Letf be any
of the methods of the class. Leta.pref anda.postf be its abstract pre- and post-
conditions; similarlyc.pref , c.postf are its concrete pre- and post-conditions. Let
CS be the concrete synchronization invariant, andAS the abstract one. Then in
order to show that the concrete specification implies the abstract one we need to
establish the following ((1a) is for eachf):

a.pref (ε(ω))⇒ c.pref (ω) (1a)

c.postf (ω)⇒ a.postf (ε(ω))) (1b)

CS(ω)⇒ AS(ε(ω)) (2)

These implications simply represent the fact that the abstract and concrete spec-
ifications are directly related via the mapping functionε. (1a) and(1b) are sim-
plified versions of the corresponding rules in [Ecoop97]; for instance if we were
to include afunctional invariant for the class (in addition to the synchronization
invariant), that would also have to appear in these rules. Since our interest in this
paper is in synchronization issues, we ignore these complications.5

Now consider the first part of the verification task. This task consists of two
subtasks. First we must verify that the bodies of the various methods meet their
respective concrete specifications, i.e., their pre- and post-conditions. Second that
the code for the entire class meetsCS, the concrete synchronization invariant.
Note that so far we have been able to ignore the programming language notation in

5It should be noted though that except for very simple classes, functional invariants are neces-
sary in order to completely specify class behavior.

8

which these method bodies and synchronization code is written but now we must
take account of this notation. The interesting question here is how the various
notations that have been proposed in the literature [for example, 7, 11, 10] for
specifying the synchronization conditions, may be handled.6 We will consider
several of these notations in turn.

A natural approach to expressing synchronization code in classes would be the
approach ofmethod guardsas proposed in Frølund [7].

One possible approach to expressing synchronization code would be for the
programming language to provide direct access to the acceptance set, or some-
thing very similar to it, and provide primitives for its direct manipulation in the
bodies of the various methods. This is the approach, for instance, of Kafura and
Lee [11]; theirbehavioral abstractionis essentially the same concept as our ac-
ceptance set. The value of the behavioral abstraction at any point is the set of
method names that areenabledat that point. Each method body, as its last action,
is required to execute abecome command that essentially assigns a new value
to the acceptance set. The reason for the name ‘behavioral abstraction’ is that
separately from the bodies of the individual methods, in a (protected) section that
may be called the ‘behavior ’ section, the class designer identifies a number of
subsets –not necessarily, not even usually, disjoint from each other– of the set of
all methods, and names these subsets with distinct names, sayB1, . . . , Bm. The
become statement at the end of each method is then of the formbecome Bj

which says that when this method finishes, the set of enabled methods will be all
(and only) those whose names appear inBj. Thus the details of which methods are
enabled are partly abstracted away in the definitions in thebehavior section.

Further, when a class is defined by inheritance from another class, the derived
class introduces its ownbehavior section. The corresponding behavior abstrac-
tions, let us call them,B′

1, . . . , B
′
m

In order to verify the properties of classes constructed using such behavioral
abstractions, we need t

Frølund [7] proposes the idea of

6We will assume that the non-synchronization portion of the individual methods are written
using a standard collection of constructs and will omit discussion of them.

9

