
Correctness of Mutual Exclusion Algorithms

Neelam Soundarajan and Ten-Hwang Lai
Computer and Information Science

Ohio State University, Columbus, OH 43210
e-mail: {neelam, lai}@cis.ohio-state.edu

Abstract

One way of characterizing non-token-based mutual exclusion (m.e.) algorithms is in terms of the
underlying information structure. The information structure for a given m.e. algorithm specifies
which particular processes interact with which other processes before entering their critical sections,
and which processes they interact with when leaving their critical sections. By focusing on the
information structure of an m.e. algorithm, we can compare different algorithms by comparing
the respective information structures. Further, we can characterize the correctness of an m.e.
algorithm in terms of conditions that its information structure must satisfy. In this paper, we
propose a necessary and sufficient condition for ensuring the correctness of the m.e. algorithm and
show that this condition is superior to the currently accepted condition.

1 Introduction

Mutual exclusion (m.e.) is a central problem in distributed systems. Over the years, numerous
algorithms have been proposed for solving this problem. These algorithms may be classified [4, 8]
as token-based and non-token-based. Our focus in this paper is on non-token-based algorithms. In
these algorithms [1, 3, 5, 7], each process keeps some information about the status of the system
such as which processes currently are waiting to enter their critical sections. When a process wishes
to enter its critical section, it sends ‘request’ messages to a certain set of processes; it then waits
for ‘grant’ messages from a certain set of processes granting it permission, at which point it enters
its critical section; and when it leaves the critical section, it sends ‘release’ messages to a certain
set of processes. Information about the set of processes to which each process sends requests to
or sends release messages to can be considered as the information structure [6] associated with
this algorithm. Different non-token-based m.e. algorithms can be considered as special cases of a
generalized algorithm, the differences between the different algorithms being captured entirely in
the differences between the corresponding information structures.

Our goal in this paper is to consider necessary and sufficient conditions that the information
structure of an m.e. algorithm must satisfy in order ensure the correctness of the algorithm. The
main contributions of the paper are: First it shows that the standard condition [6, 4, 8] that is
accepted in the literature to be the necessary and sufficient condition to guarantee correctness of
the m.e. algorithm is, in fact, not necessary. This is proved by considering some simple and correct
m.e. algorithms and showing that they do not satisfy the standard condition. Second, it proposes

1

a new condition and proves that this condition is both necessary and sufficient.

The paper is organized as follows: In Section 2, we specify the system model, describe the infor-
mation structure associated with an m.e. algorithm, and consider the generalized m.e. algorithm.
In Section 3, we present the currently accepted condition and show that it is not necessary for the
correctness of the algorithm. In Section 4, we propose a new condition and prove that it is both
sufficient and necessary. In the final section, we summarize the work and consider pointers for
future work.

2 System model, Information structure, and
Generalized M.E. algorithm

2.1 System model

Our system model is a fairly typical one. We assume that the system consists of N processes, each
with a unique process id. Processes communicate with other processes via asynchronous message
passing. Communication is assumed to be reliable; message transit time is arbitrary but finite.
Processes exchange three types of messages: a request message, which we will denote RQ, indicates
that the sending process wishes to enter its critical section (c.s.) and is requesting permission to do
so from the receiving process; a grant message, denoted GR, means the sending process is granting
permission to the receiver to enter the c.s; and a release message, RL, indicates that the sending
process is ‘releasing’ the c.s., i.e., is leaving its c.s.

2.2 Information structure

The information structure consists of two sets for each process Pi; the request set Ri consisting of
the id’s of those processes to which Pi sends an RQ message when it wishes to enter its c.s; and the
inform set Ii consisting of the id’s of the processes to which Pi sends an RL message when it leaves
its c.s. It is also useful to define the status set Si as the set {j|i ∈ Ij}. This information structure
is the one proposed by Sanders [6].

2.3 Generalized m.e. algorithm

The generalized algorithm works as follows: Each process Pi has a boolean variable Freei which
is true if according to the information that Pi has, no process is in its critical section and false
otherwise. When a process Pi wishes to enter its c.s., it sends a request message to each process Pj
whose identity j is in its request set Ri; it then waits for GR messages from each of these processes
before entering its critical section. When Pi leaves its critical section, it sends a RL message to
every process whose id is in its inform set, Ii.

When a process Pi receives a request, it either immediately grants permission to the requesting
process by sending a GR message, or adds the request to its collection of pending requests, depending
on whether Freei is true or false at the time the request was received. If Pi sends a GR message to
another process Pj , then it sets Freei to false if j ∈ Si, i.e., i ∈ Ij .

When Pi receives a RL message, it does the following: Sets Freei to true. Next, if its collection of

2

pending requests is non-empty, it picks the highest priority request from the collection and sends a
GR message to the requesting process Pj , removes the request from its collection, and if j ∈ Si, sets
Freei to false; it repeats this until its collection is empty or Freei is false. A standard time-stamp
based notion of priority [2], with ties being resolved by an ordering among process id’s, is used.
The time-stamp and process id are part of each request.

There is a special case corresponding to i ∈ Ri. In this case, when Pi decides to enter its critical
section, before sending its requests to other processes in Ri, either it grants permission to itself if
Freei is true and sets Freei to false if i ∈ Ii, or it adds the request to its collection of pending requests
if Freei is false. Similarly, if i ∈ Ii, when Pi leaves its critical section, before sending RL messages to
the other processes in Ii, Pi does the following: sets Freei to true and proceeds to grant the highest
priority request(s) from its collection of pending requests, as described in the last paragraph.

The generalized algorithm above does not necessarily implement mutual exclusion correctly for
arbitrary values of Ri and Ii. For example, if we defined each Ri to be just {i}, i.e., each process
had to just get permission from itself before entering its c.s., m.e. would clearly be violated. At the
other extreme, if we defined each Ri and Ii to contain the id’s of all the processes in the system,
m.e. would indeed be guaranteed but far more messages than necessary would be exchanged. It is
therefore important to have a condition that is both necessary and sufficient to ensure that m.e. is
implemented correctly.

3 Standard Condition for Correctness

In this section we first describe the condition that is accepted in the literature as the necessary and
sufficient condition for correctness of the generalized m.e. algorithm. We will show that while this
condition is sufficient, it is not necessary; indeed, that many simple and correct algorithms do not
satisfy the condition.

Sanders [6] presents the following result: If (i ∈ Ii) for all i, then the following is a necessary
and sufficient condition for the correctness of the m.e. algorithm:

[(∀i. Ii ⊆ Ri) ∧ (∀i, j.((Ii ∩ Ij 6= Φ) ∨ (j ∈ Ri ∧ i ∈ Rj)))] (A)

The sufficiency of (A) may be seen as follows: Consider two processes Pi, Pj . Suppose (Ii∩Ij 6= Φ) is
satisfied, say, (k ∈ Ii ∩ Ij). Then, since (Ii ⊆ Ri) and (Ij ⊆ Rj), Pi and Pj will each seek permission
from Pk before entering its c.s.; Pk will, since (k ∈ Ii ∩ Ij), set its Freek to false once it grants
permission to either of them; hence Pk will not grant permission to the other until it receives a
release message from the first.

The argument in the case of the other alternative, (j ∈ Ri ∧ i ∈ Rj), is a bit more involved.
Suppose Pi and Pj decide to enter their c.s.’s at about the same time. Each will grant itself
permission to do so, set its Free to false (since i ∈ Ii, j ∈ Ij) then receive the request from the
other; hence neither will grant permission to the other1. What if, say, Pj decides to enter its c.s.
somewhat before Pi does so, and sends its request to Pi? In that case, Pi will grant permission to
Pj and will not set Freei to false (since j 6∈ Ii). Next, Pi decides to enter its c.s., and Pi will grant
its own request; but Pj will not grant Pi’s request, hence m.e. will be ensured.

Consider now the necessity of (A). Suppose for a particular i, j, (A)’s second conjunct is not
1There is a danger of deadlock in this case. That can be handled in a standard manner with a slightly more

involved approach. Here we will only concern ourselves with the m.e. issue.

3

satisfied. Then we can create a scenario in which m.e. is violated, as follows. Suppose i 6∈ Rj . Let
Pi first decide to enter its c.s.; it gets permission from itself to enter the c.s., then sends requests
to all processes in (Ri − Ii); all of them will grant it permission; moreover, since these processes
are not in Ii, their Free variables will remain true. Freei will be false but that will not matter since
i 6∈ Rj , so Pj will not seek its permission in the next step; note also that Freej will be true although
Pi obtained permission from Pj (since j 6∈ Ii). Next, Pj decides to enter its c.s.; it gets permission
from itself, then sends requests to all processes in (Rj− Ij); all of them will grant it permission since
their Free variables are true; moreover, their Free variables will remain true at this point. Finally
Pi can request permission from all processes in (Ii − {i}) and Pj from all processes in (Ij − {j}).
All of these will grant permissions and Pi and Pj will both enter their c.s., thereby violating m.e.

The arguments above for the sufficiency of (A) and the necessity of the second conjunct of (A)
are based on the ones in Sanders [6]. Sanders further claims that the first conjunct of (A) is also
necessary without providing any detailed justification. However, as we will see next, there are
correct m.e. algorithms that do not satisfy this clause so it is not a necessary condition. Further, as
we see below, the condition (i ∈ Ii) that the above result imposes, is not satisfied by many correct
m.e. algorithms.

The intuition behind the requirement (i ∈ Ii) is that, in conjunction with the clause (Ii ⊆ Ri),
it represents the idea that it is reasonable for a process wishing to enter its c.s. to get permission
from itself (in addition to whichever other processes are in Ri) and similarly to inform itself (in
addition to whichever other processes are in Ii) when it leaves its c.s. to help ensure m.e. But this
intuition is not well founded. For example, consider a centralized m.e. algorithm in which a single
process, say P0, makes all decisions about when each process may enter its c.s. In other words,
Ri = Ii = {0} for all i. The requirement (i ∈ Ii) is not satisfied by this algorithm (except for i = 0).
But it clearly implements m.e. correctly since no process can enter its c.s. without first sending a
request to, and getting permission from, P0; and when P0 grants permission to a process Pi, it will
set Free0 to false and will not grant permission to any other process to enter its critical section
until its Free0 becomes true which in turn will happen only when Pi finally leaves its c.s. and sends
a RL message to P0. Thus the requirement (i ∈ Ii) is not appropriate in general.

But even if (i ∈ Ii) is satisfied, the first conjunct of (A) need not be. Consider the following:
Ii = {i, 0, 1}; Ri = {0}

This structure meets the requirement i ∈ Ii, but does not satisfy the first conjunct of (A). But the
corresponding algorithm is correct: Since 0 ∈ Ri, before Pi enters its c.s., it will request permission
from P0. If Free0 is true, P0 will grant permission, and since 0 ∈ Ii, will set Free0 to false. Now if Pj
wishes to enter its critical section, it too will send a request to P0 (since 0 ∈ Rj); P0 will not grant
permission since Free0 is false. This situation will change only when Pi leaves its critical section
and sends a release message to P0 (which it will since 0 ∈ Ii); at that point, P0 will set Free0 to
true, and send a grant message to another process, possibly Pj , from which it has received a RQ
message. This ensures m.e. Note that Pi will also send RL messages to itself and to P1 when it
leaves its c.s., but those messages will not have any effect because those processes do not get any
requests so their collection of pending requests is always empty. Thus, the clause (Ii ⊆ Ri) is not
necessary for the correctness of the m.e. algorithm.

4

4 Necessary and Sufficient Condition

We cannot simply omit (Ii ⊆ Ri), because then we would face the following problem. Suppose
k ∈ (Ri ∩ Ii ∩Rj ∩ Ij). We would expect Pk to ensure mutual exclusion between the critical sections
of Pi and Pj . But there is a problem if there is some i′ such that k ∈ (Ii′ − Ri′). In this case,
mutual exclusion can be violated as follows: First, Pi′ sends requests to all processes in Ri′ (which
does not include k), gets grants from them, and enters its c.s. Next, Pi sends a request to Pk which
grants the request and sets Freek to false. Next, Pi′ leaves its c.s., and sends release messages to all
processes in Ii′ , including Pk; Pk, mistaking this for a release message from Pi, sets Freek to true.
Next, Pj decides to enter its c.s., and sends a request to Pk; since Freek is true when Pk receives
this request, it grants it (and sets Freek to false). At this stage, both Pi and Pj have received grants
from Pk and in the absence of some other process ensuring mutual exclusion between them, each
will enter its c.s.

Thus the question is, how do we make sure that for each pair of processes, we have some process
that ensures m.e. between them, without imposing a complete ban on such “bad” release messages
from “third-party” processes such as Pi′ , i.e., without requiring (Ii ⊆ Ri) for all i? Let us first
introduce some further notation. Define Bi = Ii − Ri and BB = ∪iBi. We will call processes
whose indices are in Bi “bad” processes, these being the processes that may receive spurious release
messages from Pi; BB is the set of all bad processes. Let NN be the set of all processes. Let
GG = NN− BB; thus GG is the set of all “good” processes. We can now state our main result:

Theorem: The necessary and sufficient condition for the correctness of the generalized m.e. algo-
rithm is:
∀i, j.[{(Ri ∩ Rj ∩ Ii ∩ Ij ∩ GG) 6= Φ} ∨ {(i ∈ (Ri ∩ Rj ∩ Ii ∩ GG)) ∧ (j ∈ (Ri ∩ Rj ∩ Ij ∩ GG))}] (B)

2

In other words, the necessary and sufficient condition for the correctness of the m.e. algorithm is
that, for each pair i, j, one of the following must be true:

(b1). Either there exists k that is in each of Ri,Rj , Ii, Ij , and GG;
(b2). Or [(i is in each of Ri,Rj , Ii,GG) and (j is in each of Ri,Rj , Ij ,GG)]

A special case is when each Bi is empty, i.e., (Ii ⊆ Ri); in other words, there are no bad processes
that receive spurious release messages. Then GG will be the set of all processes and ∩ GG may be
omitted from each clause of (B).

The intuition behind this condition is as follows: In order to ensure mutual exclusion between
Pi and Pj , one of the following must be satisfied:
b1. There must be a process Pk that sends grants to both Pi and Pj , and keeps track of these
grants, i.e., k in (Ri∩Rj ∩ Ii∩ Ij); in addition this k must be a good process, so that it is not misled
by spurious release messages from third-party processes. Or,
b2. Pi and Pj must each be responsible for sending grants to both Pi and Pj ; and each must keep
track of grants to itself. In addition, both Pi and Pj must be good so they are not misled by
spurious releases.

Lemma: If k ∈ (Ri∩ Ii∩GG), and if Pk sends a grant message GR to Pi, then Freek will not become
true again until Pi enters its c.s., completes it, leaves the c.s., sends a release message to Pk, and
Pk processes it.
Proof: From generalized m.e. algorithm described in Section 2.3, it is clear that Freek will be set
to true only when Pk receives a release message RL from some process, say, Pi′ . We will show that

5

Pi′ must in fact be the same as Pi. Now the only time that Pi′ sends a RL is when it leaves its c.s.
and at that point, it sends RL messages to all processes in Ii′ . Hence, if Pk receives such a message,
k must be in Ii′ and since k ∈ GG, this implies k ∈ Ri′ . Before it can leave its c.s., Pi′ must, of
course, have entered it, and it can do so only after receiving grant messages from all processes in Ri′
including Pk. Pk could not have sent its GR message before it sent the GR message to Pi because if
Pk had done so, it would have set Freek to false, and would not then have sent a GR message to Pi
(until Freek was true which in turn would happen only upon receiving, by inductive assumption,
the release message from Pi′). Pk could not have sent the GR to Pi′ after sending its GR to Pi
because at that point Freek would be false. The only possibility then is that Pi′ must in fact be
the same as Pi, not some other process.2

4.1 Proof of sufficiency

Next we will show that if either (b1) or (b2) is satisfied, the algorithm will implement m.e. correctly,
thereby proving the sufficiency of the condition (B).

Consider a particular pair i, j of process indices. Suppose for this pair, that (b1) is satisfied.
Suppose k is in Ri,Rj , Ii, Ij , and GG. Suppose Pi has got into its c.s. That means Pk must have sent
Pi a GR message. When it did that, Pk must have set Freek to false since k is in Ii. Now in order
for Pj to enter its c.s., it must receive grant messages from all processes in Rj , including Pk. But
Pk will not send a GR to Pj (or to any other process) until it receives a release message from some
process. Since k ∈ GG, by our lemma, this release message can only come from Pi, i.e., only when
Pi leaves its c.s. Hence Pj cannot get into its critical section while Pi is still in its critical section.

Suppose now (b2) is satisfied for this i, j pair. Suppose Pi has already got its c.s. before Pj
decides to enter its c.s. Since i ∈ Ii, Freei will be set to false and will not become true until Pi gets
a release message; and since i ∈ GG, this will not happen until Pi gets out of its c.s. and “sends
itself a release message”, i.e., sets Freei to true. Therefore, given that i ∈ Rj so Pj needs a GR
message from Pi before entering its c.s., Pj will not enter its c.s. until Pi leaves its. We can argue
similarly if Pj is already in the c.s. before Pi decides to enter its c.s.

What if Pi and Pj decide to enter their c.s.’s at about the same time? One request will have a
higher priority, say Pi’s request. Pi will process this request before that of Pj since, according to
the algorithm in Section 2.3, if i ∈ Ri, as soon as Pi decides to enter its c.s., it will either grant
its own request or add it to the pending requests depending on whether Freei is true or false. And
in the latter case, it will grant its own request before granting Pj ’s since the former has higher
priority. So Pi will first grant its own request, set Freei to false and the rest of the argument from
the last para will now apply to show that Pj cannot enter its c.s. until Pi leaves its. So mutual
exclusion is ensured. 2

Note: Consider again the argument that Pi will process its own request first if that request has
higher priority. What if Pi received Pj ’s request just before deciding to make its own request? This
is not possible because if it has received Pj ’s request, Pi will choose a higher time stamp for its
own request, so its request will have a lower priority than that of Pj . So if Pi’s request has a higher
priority, it must be because Pi has not yet received Pj ’s request at the time Pi decides to make its
request. Of course if Pj ’s request is higher priority, Pi may receive that request before or after it
processes its own; but Pj would have processed its own request before receiving Pi’s and we can
go through the same argument exchanging the roles of i and j to show that mutual exclusion is
ensured.

6

4.2 Proof of necessity:

Suppose for a given i, j pair, that neither (b1) nor (b2) is satisfied. We will then show that it is
possible to construct a scenario under which m.e. is violated, thereby proving that (B) is a necessary
condition.

First we note the following: Ri = (Ri − Ii) ∪ (Ri ∩ Ii) (by set theory).
Further, (Ri∩ Ii) = (Ri∩ Ii∩BB)∪(Ri∩ Ii∩GG) (by set theory, given BB∪GG = set of all processes).
And, (Ri ∩ Ii ∩ GG) = [((Ri ∩ Ii ∩ GG)− {i}) ∪ ((Ri ∩ Ii ∩ GG) ∩ {i})] (set theory).
Thus Ri is the union of the four disjoint sets (Ri − Ii), (Ri ∩ Ii ∩ BB), ((Ri ∩ Ii ∩ GG) − {i}), and
((Ri ∩ Ii ∩ GG) ∩ {i}). Rj can similarly be written as the union of four disjoint sets. The reason
for expressing Ri and Rj in this fashion is that it will help in the construction of the m.e.-violating
scenario.

We will describe the construction of the scenario in a series of steps. In each step Pi and Pj will
send requests to, and get grants from, the processes in the different sets that make up Ri and Rj
respectively. We assume that at the start of the scenario no process is in its critical section, that
the Free variables of all the processes are true, and that no process has any pending requests.

1. Pi decides to enter its c.s., sends RQ messages to, and gets GRs from all the processes in
(Ri− Ii). Pj also decides to enter its c.s., sends RQs to, and gets GRs from all the processes in
(Rj − Ij). Note that there is no danger of any of these processes not sending GR messages to
Pi or Pj no matter in what order the requests from Pi and Pj reach them because first, all the
Free variables are initially true and second, since these processes are not in Ii/Ij , they leave
their Free variables true when they send their GR messages. (We will see in step 4 that either
Pi’s or Pj ’s requests may have to be postponed until the other’s requests have been sent to
certain processes and corresponding grants received. The other steps will be unaffected by
this consideration.)

2. Next we might consider having Pi send RQs to all the processes in (Ri ∩ Ii ∩ BB). But this
will lead to trouble if there is some k that is in (Ri ∩ Ii ∩BB) that is also in (Rj ∩ Ij); because
in this case, Pk would have set Freek to false when it sends a GR message to Pi, and so will
not send a GR when Pj makes its request and we would not be able to achieve our goal of
violating m.e.

To take care of this, we will make use of the fact that k ∈ B and proceed as follows: Suppose
k′ is such that k ∈ (Ik′ −Rk′); such a k′ must exist because k ∈ B. Before Pi (or Pj) sends its
RQs, we will start by having Pk′ send RQs to all processes in Rk′ ; these processes will send
GRs to Pk′ (because all Free variables are initially true); next, Pi will send a RQ message to
Pk; Pk will respond with a GR (since k 6∈ Rk′ , so Freek is true before Pk receives Pi’s request);
and Pk will set Freek to false; next, we will have Pk′ get out of its c.s. and send RL messages
to all processes in Ik′ , including Pk; when Pk receives this message, it will set Freek to true.
At this point, all Free variables are true and Pi has received a GR from Pk. We repeat this
process for each k ∈ (Ri∩ Ii∩BB); and at the end of this, Pi would have received GR messages
from all the processes in (Ri ∩ Ii ∩BB), and all their Free variables will still be true. Next we
go through the same procedure with Pj for all processes in (Rj ∩ Ij ∩ BB).

There is one special situation: What if the k′ considered in the last paragraph turns out to
be j? In other words, suppose k is in (Ri ∩ Ii ∩ BB ∩ (Ij − Rj)) (and there is no other k′

such that k ∈ (Ri ∩ Ii ∩ BB ∩ (Ik′ − Rk′))). In this case, there is no need to require Pj to do

7

any of the things we required of Pk′ . The point is that the reason for getting Pk′ to enter
its c.s. and exit it was to make sure that Freek is true after it has sent a GR message to Pi
since we may want Pj to be able to get a GR message from Pk. But here k is in (Ij − Rj)
which means that Pj does not need permission from Pk to enter its c.s. So there is no need
to ensure that Freek is true after Pk has sent the GR message to Pi. Indeed, in general, if
k ∈ (Ri − Rj), we do not need to worry about the value of Freek after it has sent the GR
message to Pi; similarly if k ∈ (Rj − Ri), we do not need to worry about the value of Freek
after it has sent the GR message to Pj . Note also that if this situation occurs for Pi, i.e.,
k ∈ (Ri∩ Ii∩BB∩(Ij−Rj)), then it cannot simulatenously occur for Pj , i.e., we cannot for the
same k, have k ∈ (Rj ∩ Ij ∩ BB ∩ (Ii − Ri)) (since the intersection of these two sets is empty).

3. Pi still needs to get grants from (Ri ∩ Ii ∩ GG) and Pj needs grants from (Rj ∩ Ij ∩ GG).

Pi now sends requests to all processes in (Ri ∩ Ii ∩ GG) − {i} and receives GR messages
from them. And Pj sends requests to all processes in (Rj ∩ Ij ∩ GG) − {j} and receives
GR messages from them. Note that none of the processes in (Ri ∩ Ii ∩ GG) − {i} can be in
(Rj∩Ij∩GG)−{j} (because, otherwise, (b1) will be satisfied). Similarly, none of the processes
in (Rj ∩ Ij ∩ GG) − {j} can be in (Ri ∩ Ii ∩ GG) − {i}. So these two sets of requests/grants
can proceed (even simultaneously) without difficulty. Note also that a process k that is in
(Ri ∩ Ii ∩GG)−{i} may well be in (Rj − Ij); but Pj has already received grant messages from
such processes, so there is no problem in Pi now receiving a GR from Pk and Freek being set
to false. Similarly if k ∈ (((Rj ∩ Ij ∩GG)− {j})∩ (Ri − Ii)), Pi has already obtained its grant
from Pk (in step 1), so Pj can get its grant from Pk without problem.

4. Next, suppose i is in (Ri ∩ Ii ∩GG); i may also be in (Rj − Ij) (but not (Rj ∩ Ij) because then
(b1) would be satisfied). In this case, if Pi were to start sending its requests before Pj does,
we will have a problem because Pi would grant its own request immediately, and set Freei to
false; then it would not grant Pj ’s request when that arrives. We cannot get around this by
assuming that Pi’s request to itself is postponed while its requests to processes in (Ri − Ii)
etc. are sent out and grants received because, as noted before, if i ∈ Ri then Pi considers its
own request to enter the c.s. as soon as it decides to enter the c.s. So in this case, we must
have Pj send its RQ message to Pi (as part of step 1 for Pj since i ∈ (Rj − Ij)), Pi sends
the GR to Pj ; Freei remains true since i ∈ (Rj − Ij). Now Pi can decide to enter its c.s.; it
will then grant itself permission to enter the c.s., set Freei to false, then start sending out the
other requests as described in earlier steps.

Similar considerations apply if j ∈ ((Rj ∩ Ij ∩ GG) ∩ (Ri − Ii)); i.e., in this case we have to be
sure to have Pi send its request to and receive the grant from Pj before Pj decides to enter
its c.s. What if both of these situations apply? That cannot happen because then (b2) would
be satisfied.

What if i ∈ (Ri∩Rj ∩ Ij ∩GG) and j ∈ (Ri∩Rj ∩ Ii∩GG) are both satisfied? Note first that in
this case, i must not be in Ii and j must not be in Ij (else (b1) or both (b1) and (b2) will be
satisfied). In this case, Pi will get its grant from itself in the first step (since i ∈ (Ri− Ii)) and
similarly Pj will get its grant from itself in the first step. Following that, Freei and Freej will
still be true, and Pi and Pj can get grants from each other in step 3 without any difficulties.

In summary, we expressed each of Ri and Rj as unions of four disjoint sets each, described a scenario
in which in a sequence of four steps, one corresponding to each of the four sets making up Ri (and
similarly Rj), Pi gets grants from all the processes in Ri and Pj gets grants from all the processes

8

in Rj . At this point, both processes can enter their respective critical sections since they have all
the grant messages they need, and mutual exclusion will be violated. This shows that condition
(B) is a necessary condition for ensuring mutual exclusion.

5 Discussion

The importance of mutual exclusion was, of course, recognized from the earliest days of concurrency.
Over the years, many non-token-based m.e. algorithms have been proposed. The correctness of
these algorithms is often quite difficult to establish because of the complex interactions between
the processes, with each process getting permission from a specific set of processes before entering its
critical section and informing another set of processes when leaving it, etc. By treating the different
algorithms as special cases of a general algorithm, with the differences between the individual
algorithms being captured in terms of the differences between their corresponding information
structure, we reduce the task of establishing correctness of an m.e. algorithm to checking whether
its information structure satisfies a particular condition.

But in order for this approach to be useful, the condition we check for must be both necessary
and sufficient. Sufficiency is needed because otherwise there would be no guarantee of correctness
of the corresponding algorithm even if its information structure satisfied the condition. Necessity
is needed because without it, the information structure of correct m.e. algorithms may not satisfy
the condition. In this paper, we showed that the condition that is accepted in the literature as
necessary and sufficient is in fact not necessary; proposed a new condition for the information
structure; and showed that the proposed condition is necessary and sufficient.

We conclude with a pointer to future work. Throughout the paper, and in the literature on
information structures, the information structure is assumed to be static. One important extension
to consider would be the possibility of a dynamic information structure [7], i.e., one that changes
as the system executes, perhaps as the relative frequencies with which the different processes need
to access their critical sections change. Analyzing these algorithms by direct operational reasoning,
for example via the construction of scenarios, is likely to be even more difficult than in the case of
algorithms with static structures; hence having a necessary and sufficient condition to guarantee
correctness would be essential. One important point to note in such algorithms is that even if in
the steady state they satisfy the requirement Ii ⊆ Ri so that in the steady state the information
structure would satisfy the condition of theorem 1, during the time that the information structure
is changing, we cannot expect this requirement to be met. Hence we believe that conditions similar
to that of theorem 2 might have to be satisfied during this time. We hope to address this question
in our future work.

References

[1] O. Carvalho and G. Roucairol. On mutual exclusion in computer networks. Comm. ACM,
26:3–5, 1983.

[2] L. Lamport. Time, clocks, and ordering of events in a distributed system. Comm. ACM,
21(7):558–564, 1978.

9

[3] M. Maekawa. A
√
n algorithm for mutual exclusion in decentralised systems. ACM Trans. on

Compu. Sys., 3:145–159, 1985.

[4] M. Raynal. A simple taxonomy for distributed mutual exclusion algorithms. Operating Sys.
Rev., 25:47–49, 1991.

[5] G. Ricart and A.K. Agrawala. An optimal algorithm for mutual exclusion in computer networks.
Comm. ACM, 24:9–17, 1981.

[6] B. Sanders. Information structure of distributed mutual exclusion algorithms. ACM Trans. on
Computer Systems, 5(3):284–299, 1987.

[7] M. Singhal. A dynamic information structure mutual exclusion algorithm. IEEE Trans. on
Par. and Dist. Sys., 3(1):121–125, 1992.

[8] M. Singhal. A taxonomy of distributed mutual exclusion. J. Par. and Dist. Computing, 18:94–
101, 1993.

10

