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Abstract

A key aspect of the Object-Oriented (OO) ap-
proach is that a designer can enrich an OO
system by providing suitable (re-)definitions for
some of the methods of the given system. Ap-
plication frameworks provide good examples of
such enrichment. An OO framework typically
provides a number of template methods that im-
plement specific patterns of calls to hook meth-
ods. An application developer can customize
the framework by simply providing definitions,
suited to the needs of the particular applica-
tion, for the hook methods. The calls, made
by the template methods of the framework, are
dispatched at run-time to the hook methods
defined in the application, thereby customizing
the behavior of the template methods as well.

Testing such systems should include testing
the hook method call-patterns of the template
methods, that is their grey-box behavior. But
software vendors often do not provide the source
code of their systems. This poses the challenge,
how can we test the grey-box behavior of a sys-
tem without being able to access and instru-
ment the code? In this paper, we develop an
approach that allows us to do this, and demon-
strate it on a simple case study.

1 Introduction

An important feature of object-oriented (OO)
languages is the possibility of enriching or ex-
tending the functionality of an OO system [16]
by providing, in derived classes, suitable defi-
nitions or re-definitions for some of the meth-

ods of some of the classes of the given sys-
tem. Application frameworks [7, 11, 18] provide
compelling examples of such enrichment. The
framework includes a number of hooks, meth-
ods that are not (necessarily) defined in the
framework but are invoked in specific, and of-
ten fairly involved, patterns by the polymorphic
or template methods [9] defined in the frame-
work. An application developer can build a
complete customized application by simply pro-
viding appropriate (re-)definitions for the hook
methods, suited to the needs of the particu-
lar application. The calls to the hook meth-
ods from the template methods are dispatched
to the methods defined by the application de-
veloper, so that the template methods also ex-
hibit behavior tailored to the particular appli-
cation. Since the patterns of hook method calls
implemented in the template methods are often
among the most intricate part of the overall ap-
plication, a well designed framework can be of
great help in building applications, and maxi-
mizes the amount of reuse among the applica-
tions built on it. Our goal is to investigate ap-
proaches to perform specification-based testing
of such frameworks.

Testing such systems should clearly include
testing these patterns of hook method calls.
That is, we are interested in testing what is
called the grey-box behavior [2, 4, 8, 20] of OO
systems, not just their black-box behavior. If
we had access to the source code of the tem-
plate methods, we could instrument the code
by inserting suitable instructions at appropri-
ate points to record information about the hook
method calls; for example, just prior to each call
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to a hook method, we could record the identity
of the method being called, the values of the
arguments, etc. But framework vendors, be-
cause of proprietary considerations, often will
not provide the source code of their systems.
Hence the challenge we face is to find a way to
test the grey-box behavior of template methods
without being able to make any changes to its
code such as adding “monitoring code”, indeed
without even having the file containing source
code of the system.

In this paper, we develop an approach that al-
lows us to do this. Given a framework, the cor-
responding testing system we build using our
approach itself turns out to be an application
built on the framework. This ‘testing appli-
cation’ can be generated automatically given
information about the structure of the various
classes that are part of the framework including
the names and parameter types of the various
methods and their specifications, and the com-
piled code of the framework. We have imple-
mented a prototype test system generator; we
will present some details about our prototype
later in the paper.

How do we specify grey-box behavior? Stan-
dard specifications [12, 16] in terms of pre- and
post- conditions for each method of each class in
the system only specify the black-box behavior
of the method in question. Consider a template
(or polymorphic, we will use the terms inter-
changeably) method t(). There is no informa-
tion in the standard specification of t() about
the hook method calls that t() makes during
execution. We can add such information by in-
troducing a trace variable [4, 20], call it τ , as an
auxiliary variable [17] on which we record infor-
mation about the hook method calls t() makes.
When the method starts execution, τ will be the
empty sequence since at the start, t() has not
made any such calls. As t() executes, informa-
tion about each hook method call it makes will
be recorded on τ . We will use a specification
in which the post-condition of t() will give us
not only information on the state of the object
in question when t() terminates, but also about
the value of τ , i.e., about the hook method calls

t() made during its execution; we will see ex-
amples of this later in the paper. Given such a
grey-box specification, the key question we ad-
dress is, how do we test t(), without accessing or
modifying its code, to see if its actual grey-box
behavior satisfies the specification?

1.1 Related work

A number of authors have addressed problems
related to testing of polymorphic interactions
[15, 1, 19] in OO systems. In all of this work,
the approach is to try to test the behavior of
a polymorphic method t() by using objects of
all or many different derived classes to check
whether t() behaves appropriately in each case,
given the different hook method definitions to
which the calls in t() will be dispatched, depend-
ing on the particular derived class that the given
object is an instance of. Such an approach is
not suitable for testing frameworks. We are in-
terested in testing the framework independently
of any application that may be built on it, i.e.,
independently of particular derived classes and
particular definitions of the hook methods. The
only suitable way to do this is to test it directly
to see that the actual sequences of hook method
calls it makes during the tests are consistent
with its grey-box specification. The other key
difference is our focus on testing polymorphic
methods without having to their source code.

Let us now consider the question of test cov-
erage. Typical coverage criteria that have been
proposed [1, 19] for testing polymorpohic code
have been concerned with measuring the ex-
tent to which, for example, every hook method
call that appears in the polymorphic method
is dispatched, in some test run, to each defini-
tion of the hook method (in the various derived
classes). Clearly a criterion of this kind would
be inappropriate for our purposes since our
goal is to test the polymorphic methods of the
framework independently of any derived classes.
What we should aim for instead is to select test
cases in such a way as to ensure that as many as
possible of the sequences of hook method calls
allowed by the grey-box specifications actually
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appear in the test runs. One problem here, as
in any specification-based testing approach, is
that the specification only specifies what behav-
ior is allowed; but it is not necessarily the case
that the system is actually capable of exhibit-
ing each behavior allowed by the specification;
hence measuring our coverage by checking the
extent to which the different sequences of hook
method calls allowed by the specification show
up in the test runs may be too conservative if
the framework is not actually capable of exhibit-
ing some of those sequences. Another approach,
often used with specification-based testing, is
based on partitioning of the input space, i.e.,
the set of values allowed by the pre-condition of
the method. But partition-based testing suffers
from some important problems [6, 10] that raise
concerns about its usefulness. We will return to
this question briefly in the final section but we
should note that our focus in this paper is devel-
oping an approach that, without needing us to
access or modifying the source code of a tem-
plate method, allows us to check whether the
method meets its grey-box specification during
a test run, rather than coverage criteria.

The main contributions of the paper may be
summarized as follows:

• It identifies the importance of testing grey-
box behavior of OO systems.

• It develops an approach to testing a system
to see if it meets its grey-box specification
without accessing or modifying the code of
the system under test.

• It illustrates the approach by applying it to
a simple case study.

In Section 2 we consider how to specify grey-
box behavior. In Section 3, we develop our
approach to testing against such specifications
without accessing the code. We use a simple
case study as a running example in Sections 2
and 3. In Section 4 we present some details of
our prototype system. In Section 5, we summa-
rize our approach and consider future work.

2 Grey-box Specifications

Consider the Eater class, a simple class whose
instances represent entitites that lead sedentary
lives consisting of eating donuts and burgers, de-
picted in Fig. 1. The methods Eat Donuts() and

class Eater {
protected int cals Eaten = 0;

public void Eat Donuts(int n) {
cals Eaten = cals Eaten + 200 * n;}

public void Eat Burgers(int n) {
cals Eaten = cals Eaten + 400 * n;}

public final void Pig Out() {
Eat Donuts(2); Eat Burgers(2); }

}
Figure 1: Base class Eater

Eat Burgers() simply update the single mem-
ber variable cals Eaten which keeps track of how
many calories have been consumed; the parame-
ter n indicates how many donuts or burgers is to
be consumed. Pig Out() is a template method
and invokes the hook methods Eat Donuts() and
Eat Burgers().

Let us now consider the specification of
Eater’s methods. These can be specified as usual
in terms of pre- and post-conditions describing
the effect of each method on the member vari-
ables of the class. The @pre notation [21] in the

pre.Eater.Eat Donuts(n) ≡ (n > 0) (1.1)
post.Eater.Eat Donuts(n) ≡

(cals Eaten = cals Eaten@pre + 200 ∗ n)

pre.Eater.Eat Burgers(n) ≡ (n > 0) (1.2)
post.Eater.Eat Burgers(n)≡

(cals Eaten = cals Eaten@pre + 400 ∗ n)

pre.Eater.Pig Out() ≡ true (1.3)
post.Eater.Pig Out() ≡

(cals Eaten = cals Eaten@pre + 1200) (1)
post-conditions in (1) allows us to refer to the
value of the variable in question at the time the
method was invoked. Thus the specifications of
Eat Donuts() and Eat Burgers() state that each
of them increments the value of cals Eaten ap-
propriately. Given the behaviors of these meth-
ods, it is easy to see that the template method
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Pig Out() will meet its specification that it in-
crements cals Eaten by 1200.

The Eater Jogger class, depicted in Figure 2,
is a derived class of Eater. It keeps track not

class Eater Jogger extends Eater {
protected int cals Burned = 0;

public void Jog() {
cals Burned = cals Burned + 500; }

public void Eat Donuts(int n) {
cals Eaten = cals Eaten + 200 * n;
cals Burned = cals Burned + 5 * n;}

public void Eat Burgers(int n) {
cals Eaten = cals Eaten + 400 * n;
cals Burned = cals Burned + 15 * n;}

}
Figure 2: Derived class Eater Jogger

only of cals Eaten but also cals Burned. The new
method Jog() increments cals Burned. More im-
portant, Eat Donuts() and Eat Burgers() have
been redefined to update cals Burned.

What can we say about the behavior of
Pig Out() in this derived class? More pre-
cisely the question is, if ej is an object
of type Eater Jogger, what effect will the
call ej.Pig Out() have on ej.cals Eaten and
ej.cals Burned? The calls in Pig Out() to the
hook methods will be dispatched to the methods
redefined in Eatern Jogger. If we had access to
the body of Pig Out() (defined in the base class),
we can see that it invokes Eat Donuts(2) and
then Eat Burgers(2), and hence conclude, given
the behaviors of these methods as redefined in
Eater Jogger, that in this class, Pig Out() would
increment cals Eaten by 1200 and cals Burned
by 40. What if we did not have access to the
body of Pig Out() and had only the information
provided by (1.3), its black-box specification?

Behavioral subtyping [13] provides part of the
answer to this question. In essence, a derived
class D is a behavioral subtype of its base class
B if every method redefined in D satisfies its
B-specification. If this requirement is met then
we can be sure that in the derived class, a tem-
plate method t() will meet its original specifi-
cation ((1.3) in the case of Pig Out()). This is

because when reasoning about the behavior of
t() in the base class, we would have appealed to
the base class specifications of the hook methods
when considering the calls in t() to these meth-
ods. If these methods, as redefined in D, satisfy
those specifications, then clearly that reasoning
still applies when the calls that t() makes to
these methods are dispatched to the redefined
versions in D. Our redefined Eat Donuts() and
Eat Burgers() do clearly satisfy their base class
specifications (1.1) and (1.2), hence Pig Out() in
the derived class will meet its base specification.

But this is only part of the answer. The
redefined hook methods not only satisfy their
base class specifications but exhibit richer be-
havior in terms of their effect on the new vari-
able cals Burned. Indeed, the whole point of re-
defining them was to achieve this richer behav-
ior; after all, if all we cared about was the base
class behavior, there would have been no need
to redefine them at all. And the richer behavior
of the hook methods in the derived class in turn
leads to richer behavior of the template method.
How do we reason about this richer behavior?

The richer behaviors of the redefined hook
methods are easily specified and are given in

pre.Eater.Eat Donuts(n) ≡ (n > 0) (2.1)
post.Eater.Eat Donuts(n) ≡

(cals Eaten = cals Eaten@pre + 200 ∗ n)
∧ (cals Burned = cals Burned@pre + 5 ∗ n)

pre.Eater.Eat Burgers(n) ≡ (n > 0) (2.2)
post.Eater.Eat Burgers(n)≡

(cals Eaten = cals Eaten@pre + 400 ∗ n)
∧ (cals Burned = cals Burned@pre + 15 ∗ n)(2)

(2.1) and (2.2). Can we use these richer spec-
ifications of the hook methods and the black-
box specification (1.3) of Pig Out() to arrive at
the richer behavior of Pig Out() in Eater Jogger,
in particular that it will increment cals Burned
by 40? The answer is clearly no, since there
is nothing in (1.3) that tells us which, if any,
hook methods Pig Out() calls and how many
times and with what argument values. Given
(1.3), it is possible that it called Eat Donuts()
once with 6 as the argument and never called
Eat Burgers(); or Eat Burgers() once with 3 as
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the argument, and Eat Donuts() zero times; it
is even possible that Pig Out() didn’t call either
hook method even once and instead directly in-
cremented cals Eaten by 1200. All of these and
more –for e.g., it could have called Eat Donuts()
ten times with 2 as the argument each time and
then decremented cals Eaten by 2800– are possi-
ble; and depending on which of these Pig Out()
actually does, its effect on cals Burned will be
different. Note that for all of these cases, the
original behavior (1.3) is still satisfied. That
is ensured by behavioral subtyping. But if we
are to arrive at the richer behavior of Pig Out(),
we need not just the black-box behavior of the
template method in the base class as specified
in (1.3), but also its grey-box behavior.

Consider the grey-box specification (1.3′).
The label gb on the pre- and post-conditions

gb.pre.Eater.Pig Out() ≡ (τ = ε) (1.3′)
gb.post.Eater.Pig Out() ≡

[ (cals Eaten = cals Eaten@pre + 1200)
∧ (|τ | = 2) ∧ (τ [1].m = “Eat Donuts”)
∧ (τ [1].a = 2) ∧ (τ [2].m = “Eat Burgers”)
∧ (τ [2].a = 2) ]

indicate that this is a grey-box specification. τ
is the trace of this template method. τ is the
empty sequence, ε, when t() begins execution.
Each time Pig Out() invokes a hook method, we
add an element to record this hook method in-
vocation. This element contains the name of the
hook method called, the values of the member
variables of the Eater class at the time of the
call, their values at the time of the return from
this call, the values of any additional arguments
at the time of the call, their values at the time
of the return, and the value of any additional
result returned by the call. The grey-box post-
condition gives us information about the value
of τ when the method finishes, hence about the
hook method calls it made during its execution.
Thus (1.3′) states that |τ |, the length of, i.e.
the number of elements in, τ is 2; that the hook
method called in the first call, recorded in the
first element τ [1] of the trace, is Eat Donuts;
that the argument value passed in this call is
2; the hook method called in the second call is

Eat Burgers; and the argument passed in this
call is 2. But note that (1.3′) does not give
us information about the value the cals Eaten
had at the time of either call or return. While
this simplifies the specification, it also means
that redefinitions of the hook methods that de-
pend on the value of cals Eaten cannot be rea-
soned about given (1.3′). This is a tradeoff that
we have to make when writing grey-box specifi-
cations; include full information, resulting in a
fairly complex specification; or leave out some
of the information, foreclosing the possibility of
some enrichments (or at least of reasoning about
such enrichments, which amounts to the same
thing in the absence of access to the source code
of the template method).

Given this grey-box specification, what can
we conclude about the behavior of Pig Out() in
the derived class? Note first that from (2.1) and
(2.2), we can see that Eater Jogger.Eat Donuts()
and Eater Jogger.Eat Burgers() satisfy (1.1) and
(1.2), i.e., they satisfy the requirement of
behavioral subtyping; hence in Eater Jogger,
Pig Out() will satisfy (1.3′). But we can also
conclude given (2.1) and (2.2) and, as spec-
ified by (1.3′), that Pig Out() will make two
hook method calls during its execution, first
to Eat Donuts() with argument value 2, and
then to Eat Burgers() with argument value 2,
that in Eater Jogger, Pig Out() will increment
cals Burned by 40. In [20], we have proposed a

gb.pre.Eater Jogger.Pig Out() ≡ (τ = ε) (2.3′)
gb.post.Eater Jogger.Pig Out() ≡

[ (cals Eaten = cals Eaten@pre + 1200)
∧ (cals Burned = cals Burned@pre + 40)
∧ (|τ | = 2) ∧ (τ [1].m = “Eat Donuts”)
∧ (τ [1].a = 2) ∧ (τ [2].m = “Eat Burgers”)
∧ (τ [2].a = 2) ]

set of rules that can be used in the usual fashion
of axiomatic semantics to show: first, that the
body of Pig Out() defined in Fig. 1 satisfies the
grey-box specification (1.3′); and second, by us-
ing the enrichment rule to “plug-in” the richer
behavior specified in (2.1) and (2.2) for the re-
defined hook methods into (1.3′), that in the
derived class, the template method will satisfy
the richer specification (2.3′). But our goal here
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is to test the template method to see whether it
satisfies its specification, so we turn to that.

If we wished to test Pig Out() against its
black-box specification, the task can be car-
ried out in a standard, straightforward fash-
ion [16]. All we would need to do is create an
object ee of type Eater, check that it satisfies
the pre-condition given in (1.3) (which in this
case is vacuous since it is simply true), apply
Pig Out() on ee, and check, when control re-
turns, whether the post-condition specified in
(1.3) is satisfied. But testing the grey-box be-
havior (1.3′) is more complex. First, (1.3′) refers
to τ , and τ is not an actual variable of the
class, but an auxiliary variable introduced for
the purpose of specification. We can take care
of this by introducing a trace variable, call it
tau, as part of our testing setup and initialize
it to the empty sequence immediately before in-
voking Pig Out(). More seriously, tau needs to
be updated whenever Pig Out(), calls one of the
hook methods; else, the value of tau will remain
as ε and will not satisfy the conditions speci-
fied by (1.3′) even if in fact Pig Out()’s grey-
box behavior is in accordance with (1.3′). The
obvious way to update tau would be to exam-
ine the code (in Fig. 1) of Pig Out(), identify
all the calls that appear in this code body to
hook methods, and insert appropriate instruc-
tions into the body of Pig Out() at these points
to update tau appropriately. Thus we would re-
place the call Eat Donuts(2) by:
Eat Donuts(2); tau = tau ̂ (Eat Donuts, 2); (3)
where “̂” denotes appending the specified el-
ement to tau; calls to Eat Burgers() would be
handled similarly. Once we insert these in-
structions, we go through our testing procedure.
When Pig Out() finishes, tau would indeed have
been updated appropriately, and we can check
whether the post-condition in (1.3′) is satisfied.

As we saw earlier, each element of the trace
should record not just the name of the hook
method called and the argument value passed,
but also the state of the object at the time of the
call as well as when the call returns. Thus what
we have is incomplete. This does not matter
in this example since the grey-box specification

(1.3)′ does not refer to any of this additional in-
formation. In general though, it is necessary to
include all of this information in each element of
tau; and it is straightforward (if a bit tedious)
to do this by modifying the instructions in (3)
appropriately. But this approach does not meet
our requirements. As we have noted before, we
may not have access to the source code of the
template method we want to test. Therefore,
we certainly cannot make changes of the kind
specified in (3) to that code. The fundamental
problem we have to address is, how do we en-
sure that the trace tau is appropriately updated
to record the hook-method calls that Pig out()
makes during its execution, without modifying
its code, given that these calls are embedded in
that code? In other words, how do we do black-
box testing of Pig Out()’s grey-box behavior?

3 Black-box Testing

The key problem we face in black-box testing
of the grey-box behavior of Pig Out() is that we
cannot wait until it finishes execution to try to
record information about its hook-method calls
since, in general, by that point we no longer
have that information. What we need to do
instead is to intercept these calls as Pig Out()
makes them. But how can we do that if we are
not allowed to modify Pig Out() at the points
of these calls? The answer is provided by the
same mechanism that template methods are de-
signed to exploit, i.e., polymorphism. That is,
rather than intercepting the calls by modifying
the code of the template method, we will rede-
fine the hook methods so that they update the
trace appropriately whenever they are invoked.

In Figure 3 we define our test class,
Test Eater. Since in the post-conditions of
methods we are allowed to use, by means of
the @pre-notation, the values that variables had
when the method started execution, when test-
ing against such specifications we need to save
these initial values when a method begins ex-
ecutions. Thus in the test Pig out() method
of Test Eater, we use old cals Eaten to save the
starting value of cals Eaten.

6



??

Eat_Burgers(n)

Eat_Donuts(n)

Eater

Eat_Burgers(n)

Eat_Donuts(n)

6

3

Test_Eater

1t

Method return

Method call

   Data member update

Nt Trace initialization or update

N

LEGEND

Check post−condition

Check pre−condition

??

Pig_Out()test_Pig_Out()

4t

2t

7t

5t
Dispatch to test class

Dispatch to test class

 ?

 ?

Figure 4: Sequence Call Diagram for Test Eater.Pig Out()

class Test Eater extends Eater {
protected trace tau;

public void Eat Donuts(int n) { // redefining hook
traceRec tauel;
tauel = . . . info such as name of method called

(Eat Donuts), parameter value (n) etc.
super.Eat Donuts(n); // call original hook
tauel = . . . add info about current state etc.
tau.append(tauel); }

// Eat Burgers() is similarly redefined.

public void test Pig Out() {
if (true) {

int old cals Eaten = this.cals Eaten;
// allowed, since Test Eater extends Eater

tau = ε;
this.Pig Out();
assert(grey-box post-condition of Pig Out()

with appropriate substitutions); };
} }

Figure 3: Class Test Eater

Test Eater is a derived class of Eater, and we
have redefined both the hook methods to up-
date the trace. tau is the trace variable as be-

fore and tauel will record information about one
hook method call which will be appended to tau
once the call has finished and returned. Let
us see how Test Eater.test Pig Out() works us-
ing the sequence call diagram[3] in Fig. 4. The
six vertical lines, each labeled at the top with
the name of a method (the three on the left
being from Test Eater, the three on the right
from Eater), represent time-lines for the respec-
tive methods. To test that Eater.Pig Out() satis-
fies its grey-box specification, we create an ap-
propriate instance of the Test Eater class and
apply Pig Out() to it. This call is represented
by the solid arrow at the top-left of the fig-
ure. The method starts by checking –this is
represented by the point labeled with a dia-
mond with a single question mark inside it– the
pre-condition (which is just true in this case).
Next it initializes tau to 〈〉 and saves the initial
state in the old variable; this point is labeled
(1t) in the figure. Next, it calls Pig Out() (on
the this object). Since Pig Out() is not over-
ridden in Test Eater –it cannot be, since it is a
final method– this is a call to Eater.Pig Out().
This call is represented by the solid arrow from
Test Eater.test Pig Out() to Eater.Pig Out().
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Consider what happens when this method
executes. First, it invokes Eat Donuts() which
we have overridden in Test Eater, so this call is
dispatched to Test Eater.Eat Donuts() since the
object that Pig Out() is being applied to is of
type Test Eater. This dispatch is represented by
the solid arrow from the time-line for Pig Out()
to that for Test Eater.Eat Donuts() Now
Test Eater.Eat Donuts() is simply going to dele-
gate the call to Eater.Eat Donuts() (represented
by the arrow from Test Eater.Eat Donuts() to
Eater.Eat Donuts()); but before it does so it
records appropriate information about this
call on the trace-record variable tauel; this
action is labeled by (2t) in the figure. Once
Eater.Eat Donuts() finishes (after performing its
action consisting of updating Eater.cals Eaten,
represented by the point labeled (3)), con-
trol returns to Test Eater.Eat Donuts(),
represented by the dotted arrow from
Eater.Eat Donuts() to Test Eater.Eat Donuts().
Test Eater.Eat Donuts() now records appropri-
ate additional information on tauel and appends
this record to tau (represented by the point
labeled (4t)), and finishes, so control returns
to Eater.Pig Out(); the return is indicated by
the dotted arrow from Test Eater.Eat Donuts()
to Eater.Pig Out(). That method next calls
Eat Burgers() and this call is again dispatched
to Test Eater.Eat Burgers(), represented by
the solid arrow from Eater.Pig Out() to
Test Eater.Eat Burgers().

The process of recording initial information,
delegating the call to the corresponding method
in Eater, saving the result and appending the
record to tau, is repeated; these are represented
respectively by the point labeled (5t), the
solid arrow from Test Eater.Eat Burgers() to
Eater.Eat Burgers(), and the point (7t) (af-
ter Eater.Eat Burgers() performs its update
–represented by (6)– and returns –labeled
by the dotted arrow from Eater.Eat Burgers()
to Test Eater.Eat Burgers()). At this point
Test Eater.Eat Burgers() finishes, so it re-
turns –represented by the dotted arrow– to
Eater.Pig Out(). That method is also done so it
returns to Test Eater.test Pig Out(). The final

action, the one that we have been building
up towards, is to check if the post-condition
specified in the grey-box specification (1.3′)
(with tau substituting for τ and old cals Eaten
for cals Eaten@pre) is satisfied, labeled by the
diamond with the double question mark.

Thus by defining Test Eater as a derived class
of Eater, and by overriding the hook methods
of Eater, we are able to exploit polymorphism
to intercept the calls that the template method
makes to the hook methods. This allows us to
record information about these calls (and re-
turns) without having to make any changes to
the template method being tested, indeed with-
out having any access to the source code of that
method. This allows us to achieve our goal of
black-box testing of the grey-box behavior of
template methods1.

If there were more than one template method,
we could introduce more than one trace vari-
able; but since only one template test method
will be executing at a time, and it starts by
initializing tau to 〈〉, this is not necessary. Con-
sider now the derived class Eater Jogger. How
do we construct Test Eater Jogger? It should be
a derived class of Eater Jogger, not of Test Eater,
else the redefinitions of the hook methods in
Eater Jogger would not be used by the test
methods in Test Eater Jogger. In general, test
classes should be final. Test C is only intended
to test the methods of C. Another class D, even
if D is a derived class of C, would have its own
test class which would be a derived class of D.

4 Prototype Implementation

We have implemented a prototype testing sys-
tem2. The system inputs the grey-box spec-
ifications for template methods of the class C

1Note that Test Eater.Eat Donuts() is not the test
method for testing Eater.Eat Donuts(). If we wished to
test that method, we could include a test Eat Donuts()
method in Test Eater; this method would simply save the
starting value of cals Eaten, call the Eat Donuts() method
of the Eater class, then assert that the post-condition of
(1.1) is satisfied when control returns from that call.

2Available at:
http://www.cis.ohio-state.edu/∼tyler
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under test, and the black-box specifications for
the non-template methods. The system then
creates the source code for the test class, along
with other adjunct classes needed for the testing
process, in particular those used in construct-
ing traces when testing the template methods
of C. The methods to be treated as hooks must
be explicitly identified so that they are rede-
fined in the test class. An alternate approach
would have been to treat all non-final meth-
ods as hooks; but our approach allows greater
flexibility. Each redefined hook method that
the tool produces also checks its pre- and post-
condition before and after the dispatched call is
made. This helps pinpoint problems if a tem-
plate method fails to satisfy its post-condition.

Currently, our system does not generate test
cases, but creates skeleton calls to the test meth-
ods, where the user is required to construct
test values by hand. To do the actual testing,
the generated classes are compiled, and the test
class executed. An example of the system’s out-
put is in Fig. 5. The last output shows a case

Test number 1: testing Eat Donuts.
Test number 1 succeeded!

Test number 2: testing Eat Burgers.
Test number 2 succeeded!

Test number 3: testing Pig Out.
Method Eat Burgers called.
Method Eat Donuts called.

Postcondition of Pig Out not met!
tau = ((”Eat Burgers”, 1, 1),

(”Eat Donuts”, 4, 4))
Test number 3 failed!

* * * RESULTS * * *
Number of tests run: 3
Number of tests successful: 2

Figure 5: Output from sample run

where the grey-box specification was not met.
The problem was that the compiled Eater class
had a bug in the code of Pig Out(): it passed 1
as the parameter to Eat Donuts() and 4 as the
parameter to Eat Burgers(); hence, although
the black-box specification of Pig Out() was
satisfied, its grey-box specification was not.

5 Discussion

Our work was motivated by two observations:
First, given that perhaps the most important
aspect of template methods is the the hook
method call patterns they implement, testing
such methods requires us to test against their
grey-box specifications. Second, application de-
velopers often build their systems using COTS
components, including frameworks. If this de-
veloper wishes to test such a component, she
will have to do so without having access to the
source code of the component; Weyuker [22]
also notes the importance of testing COTS com-
ponents without having access to their source
code. The approach we have developed ad-
dresses both of these considerations.

We conclude with some pointers for future
work. We have ignored abstraction so far, in-
stead working directly with the data members of
the class under test. Cheon and Leavens [5] de-
scribe a testing system that can work with spec-
ifications that are given in terms of a conceptual
model of the class under test. They do not con-
sider grey-box specifications but we believe their
approach can be extended to deal with grey-box
behavior and we intend to explore that.

A more serious question is that of generat-
ing appropriate test cases to achieve reasonable
coverage. As we noted earlier, our prototype
system requires the human tester to provide the
test cases. One interesting approach for gener-
ating test cases is used by TestEra [14] which is a
system for specification-based testing Java pro-
grams. This system allows us to define, using a
first-order relational language, complex proper-
ties that the objects must meet. Given a specifi-
cation written in this notation, the system auto-
matically generates instances that satisfies the
pre-condition, so that we can then apply the
method under test on the object in question. If
the specification can be violated, TestEra gen-
erates a test case that shows that. The specifi-
cations that TestEra works with are black-box
specifications; we plan to investigate whether a
similar approach can be used to deal with grey-
box specifications.
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