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Below is my summary of the outstanding paper by John Hughes titled, Why Functional  
Programming Matters.

Hughes says that the purpose of his paper is to demonstrate to the "real world" that functional 
programming is vitally important.

I say that the purpose of his paper is to make you smarter. The paper presents a series of 
problems. As I proceeded through the problems, I realized that I was on a beautiful journey to the 
promised land of solving problems by simply combining existing parts. It was a thrilling, mind-
expanding journey.

Hughes implemented the solutions to the problems using Miranda. I converted them to Haskell.

Modularity is the Key to Successful Programming
As software becomes more and more complex, it is more and more important to structure it well. 
Well-structured software is easy to write, easy to debug, and provides a collection of modules 
that can be re-used to reduce future programming costs.

Modular design brings with it great productivity improvements:

1. Small modules can be coded quickly and easily.
2. General purpose modules can be re-used, leading to faster development of subsequent 

programs.
3. The modules of a program can be tested independently; helping to reduce the time spent 

debugging.

It is now generally accepted that modular design is the key to successful programming. 

Functional Languages Provide Two New Modularity Mechanisms 
Conventional languages place limits on the way problems can be modularized. Functional 
languages push those limits back. In particular, these two features of functional languages can 
contribute greatly to modularity:

1. Higher-order functions
2. Function composition, accompanied by lazy evaluation

Why is it called "Functional Programming?"
Functional programming is so called because a program consists entirely of functions. The main 
program itself is written as a function which receives the program's input as its argument and 
delivers the program's output as its result. Typically the main function is defined in terms of other 



functions, which in turn are defined in terms of still more functions, until at the bottom level the 
functions are language primitives. These functions are much like ordinary mathematical 
functions.

More Modularity = More Glue
When writing a modular program to solve a problem, one first divides the problem into sub-
problems, then solves the sub-problems, and combines the solutions. The ways in which one can 
divide up the original problem depend directly on the ways in which one can glue solutions 
together. Therefore, to increase one's ability to modularize a problem conceptually, one must 
provide new kinds of glue in the programming language.

Analogy
One can appreciate the importance of glue by an analogy with carpentry. A chair can be made 
quite easily by making the parts – seat, legs, back, etc. – and sticking them together in the right 
way. But this depends on an ability to glue wood together. Lacking wood glue, the only way to 
make a chair is to carve it in one piece out of a solid block of wood, a much harder task. This 
example demonstrates both the enormous power of modularization and the importance of having 
the right glue.

Functional Languages Provide Two New Kinds of Glue
Functional languages provide two new, very important kinds of glue. The glue enables programs 
to be modularized in new ways and thereby greatly simplified. This is the key to functional 
programming's power – it allows improved modularization. It is also the goal for which 
functional programmers must strive – smaller and simpler and more general modules, glued 
together with the new glue.

What is "Glue" in Programming?
Suppose function (module) f is defined as follows:

f = g a b

Module f is defined by gluing together modules g, a, and b. Specifically, function f is defined as 
the application of function g to a and b. So the "glue" is the ability apply function g to arguments 
a and b (some people call this "binding" a and b to g, which makes the glue analogy very 
appropriate).

Two New Kinds of Glue
The first kind of glue enables simple functions to be glued together to make more complex ones. 
Function "h" may be an argument to function "g". Function "g" is called a higher-order function.

The second kind of glue that functional languages provide enables whole programs to be glued 
together. Recall that a complete functional program is just a function from its input to its output. 
If f and g are such programs, then (g . f) is a program which, when applied to its input, computes

g (f input)
 



The program f computes its output which is used as the input to program g. This might be 
implemented conventionally by storing the output from f in a temporary file. The problem with 
this is the temporary file might occupy so much memory that it is impractical to glue the 
programs together in this way. Functional languages provide a solution to this problem. The two 
programs f and g are run together in strict synchronization. f is only started once g tries to read. 
Then f is suspended and g is run until it tries to read another input. As an added bonus, if g 
terminates without reading all of f’s output then f is aborted. f can even be a non-terminating 
program, producing an infinite amount of output, since it will be terminated forcibly as soon as g 
is finished. This allows termination conditions to be separated from loop bodies – a powerful 
modularization.

Since this method of evaluation runs f as little as possible, it is called "lazy evaluation." It makes 
it practical to modularize a program as a generator which constructs a large number of possible 
answers, and a selector which chooses the appropriate one. While some other systems allow 
programs to be run together in this manner, only functional languages use lazy evaluation 
uniformly for every function call, allowing any part of a program to be modularized in this way. 
Lazy evaluation is perhaps the most powerful tool for modularization in the functional 
programmer's repertoire.

Gluing Functions Together
The first kind of glue enables simple functions to be glued together to make more complex ones. 
It will be illustrated with several list processing problems.

Problem #1: Define a function sum that adds up all the elements of a list. 

sum must be defined for two kinds of argument: an empty list and a non-empty list. We define 
the sum of an empty list to be zero:

sum [] = 0

The sum of a non-empty list can be calculated by adding the first element of the list to the sum of 
the others:

sum (x:xs) = x  + (sum xs)

Here's our definition of sum:
 

sum [] = 0
sum (x:xs) = x  + (sum xs)

Note that (:) is replaced with (+) and [] is replaced with 0. 

The problem with those replacements is that they are specific to sum. The result is a function that 
can only be used to solve one problem. We seek to create general modules that can be used in 
solving many problems.



Terminology: In functional programming, a reduce is a function that splits apart a 
recursive data structure (such as a list) and recombines it through the use of a 
given combining operation, building up a return value. The arguments to reduce 
are a combining function, some default values, and a recursive data structure. 

Let's create a general list processing module reduce. It takes two arguments, something to replace 
(:) with and something to replace [] with. Computing sum is accomplished by gluing together 
reduce and the two replacements, (+) and 0:  

sum = reduce (+) 0

In graphical form:

reduce is a function and (+) is a function. So we are gluing together a generic function (reduce), a 
specialized function (+), and a simple value (0) to create a complex function (sum).

Here's an example:

sum [1, 2, 3, 4] -- returns 10 

Having modularized sum in this way, we can reap benefits by reusing its parts. The most 
interesting part is reduce, which we will use over and over.

Problem #2: Define a function product that multiplies the elements of a list.

reduce is reused to solve this problem. It is glued together with multiplication (*) and 1:

product = reduce (*) 1

In graphical form:

Here's an example:

product [1, 2, 3, 4] -- returns 24 

We solved a new problem with no further programming.



Defining reduce
The definition of reduce can be derived by replacing each occurrence of sum (in its original 
definition) with reduce f a, where f is any function (such as (+)) and a is the replacement value for 
an empty list. Each occurrence of 0 is replaced with a, and each occurrence of + is replaced with 
f. So this:

sum [] = 0

is replaced with this: 

reduce f a [] = a

And this (I've switched to using prefix notation for addition): 

sum (x:xs) = (+) x (sum xs)

is replaced with this: 

reduce f a (x:xs) = f x (reduce f a xs) 

Here's our definition of reduce:
 

reduce f a [] = a
reduce f a (x:xs) = f x (reduce f a xs)

The first argument f is a function. f replaces the list constructor operator (:).  The second 
argument a is a value. a replaces the empty list. The third argument is the list to be reduced.

Problem #3: Define a function anytrue that returns True if there are any True values in a list of 
Boolean values.

reduce is used again to solve this problem. It is glued together with the Boolean 'or' (||) and False:

anytrue = reduce (||) False

Here's an example:

anytrue [False, False, True, False] -- returns True 

Problem #4: Define a function alltrue that returns True if all values in the list are True. 

reduce is glued together with the Boolean 'and' (&&) and True:

alltrue = reduce (&&) True

Here's an example:



alltrue [False, False, True, False] -- returns False

Problem #5: Define a function identity that returns the list unchanged.

reduce is glued together with the list constructor (:) and the empty list, []:

identity = reduce (:) []

Here's an example:

identity "Hello World" -- returns "Hello World"

Problem #6: Define a function append that appends list k onto list j.

reduce is glued together with the list constructor (:), list k, and list j:

append j k = reduce (:) k j

Notice that the arguments to reduce are reversed from the arguments to append. So j is "the list" 
and k is "the replacement part for the empty list."

Here's an example:

append [1, 2] [3, 4] -- returns [1,2,3,4]

Recall the definition of reduce:

reduce f a [] = a
reduce f a (x:xs) = f x (reduce f a xs)

When "the list" j is empty then return "the replacement part for the empty list" k: 

append [] [3, 4] -- returns [3,4] 

When "the list" j is not empty then take its first element and prepend it to the list formed by 
reducing the rest of j. 

Let's trace the example:

append [1, 2] [3, 4]
= reduce (:) [3, 4] [1, 2]
= reduce (:) (3 : 4 : []) (1 : 2 :[]) 
= (:) 1 (reduce (:) (3 : 4 : []) (2 : [])) 
= (:) 1 ( (:) 2 (reduce (:) (3 : 4 : []) []))  
= (:) 1 ( (:) 2 (3 : 4 : [])) 



= (:) 1 (2 : 3 : 4 : [])
= (1 : 2 : 3 : 4 : [])
= [1, 2, 3, 4]

Problem #7: Define a function doubleall that doubles each element in a list.

Here's an example:

doubleall [1, 2, 3, 4] -- returns [2, 4, 6, 8]

reduce is glued together with doubleandconstruct and [], where doubleandconstruct doubles a 
number and then prepends it to the list: 

doubleall = reduce doubleandconstruct []

doubleandconstruct num list = (:) (2*num) list

Recall that: 

reduce f a (x:xs) = f x (reduce f a xs)

So, 

reduce doubleandconstruct [] (x:xs)

results in invoking doubleandconstruct with x and some list:

doubleandconstruct x list

doubleandconstruct doubles x and prepends it to list:

doubleandconstruct x list = (:) (2*x) list

The problem with doubleandconstruct is that it is a specific, dedicated function; it can only be 
used to solve only one problem, doubling a number and prepending it to a list. 

Let's modularize doubleandconstruct.

fandconstruct is a generalized version of doubleandconstruct. fandconstruct takes three arguments: 
a function f, a value x, and a list. It constructs a new list by applying f to x and then prepending 
the result to the list:  
                        

fandconstruct f x list = (:) (f x) list

Now doubleandconstruct is modularized by gluing together fandconstruct and a function double:



doubleandconstruct = fandconstruct double
                        

double n = 2*n
                        

fandconstruct f x list = (:) (f x) list

fandconstruct applies f to x and then applies (:) to (f x) and list:

(:) (f x) list

Any definition of this form:

g(h x) y

can be simplified to this:

(g . h) x y
 
And the arguments x y can be eliminated, to just show the functions: 

g . h

Thus, fandconstruct can be simplified by eliminating the second and third arguments and 
composing the list constructor operator (:) with f:

fandconstruct f = (:) . f

Let's assemble all the parts and see what we've got:

doubleall = reduce doubleandconstruct [] (1)
               

doubleandconstruct = fandconstruct double (2)
                        

double n = 2*n (3)
                        

fandconstruct f = (:) . f (4)

Now substitute fandconstruct double in (2) with (:) . double:

doubleall = reduce doubleandconstruct [] (5)
               

doubleandconstruct = (:) . double (6)
                        

double n = 2*n (7)

Substitute doubleandconstruct in (5) with  (:) . double:



doubleall = reduce ((:) . double) []
                        

double n = 2*n

doubleall is now highly modularized. It is defined by gluing together general, reusable parts.

Let's trace the evaluation of this example:

 doubleall [1, 2]

First, recall the definition of reduce:

reduce f a [] = a
reduce f a (x:xs) = f x (reduce f a xs)

Here's the trace:

doubleall [1, 2]
= reduce ((:) . double) [] [1, 2]
= reduce ((:) . double) [] (1 : 2 : [])
= ((:) . double) 1 (reduce ((:) . double) [] (2 : []))
= ((:) . double) 1 (((:) . double) 2 (reduce ((:) . double) [] []))
= ((:) . double) 1 (((:) . double) 2 [])
= ((:) . double) 1 ((:) 4 [])
= ((:) . double) 1 (4 : [])
= (:) 2 (4 : [])
= 2 : 4 : []
= [2, 4]

doubleall can be simplified still further:

doubleall = map double

map is a standard function that applies its argument (e.g., double) to every element of a list.

These two are equivalent:

map f = reduce ((:) . f) []

Problem #8: Define a function matrix that adds together all the elements in a matrix (which we 
represent by a list of lists).

Here's an example:

summatrix [[1,2,3,4],[1,2,3,4]] -- returns 20

Recall the definition of sum from Problem #1: 



sum = reduce (+) 0

sum adds together all the elements in a list.

We just saw in the last problem that map f applies f to each element in the list. So, the solution to 
this problem is to apply sum to each element in the list and then sum the results:

summatrix = sum . map sum

Let's step back for a moment and reflect on what we have accomplished. By modularizing a 
simple function (sum) as a combination of a "higher order function" and some simple arguments, 
we have arrived at a part (reduce) that can be used to write down many other functions on lists 
with no more programming effort. 

Problem #9: Consider a datatype of ordered labeled trees, defined by:

data Treeof a = Node a [Treeof a]

The definition says that a tree is a Node with label a followed by a list of subtrees. 

For example, the tree:

is represented by:

Node 1 []

The tree:

is represented by:

Node 1 [Node 2 []]



The tree:

is represented by:

Node 1 [Node 2 [], Node 3 []]

The tree:

is represented by: 

Node 1 [Node 2 [Node 4 []], Node 3 []]

And so forth.

Let's create a function, redtree (reduce tree), analogous to reduce. Recall that reduce took two 
arguments, something to replace (:) with and something to replace [] with. Since trees are built 
using Node, (:), and [], redtree must take three arguments – something to replace each of these 
with. And since trees and lists are of different types, we will have to define two functions, one 
that operates on trees (redtree) and one that operates on lists (redtree').

Here's the definition of redtree and redtree':
 



redtree f g a (Node label subtrees) = f label (redtree' f g a subtrees)
redtree' f g a ((:) subtree rest) = g (redtree f g a subtree) (redtree' f g a rest)
redtree' f g a [] = a

f is any function. It replaces the Node constructor function. 
g is any function. It replaces the list constructor function (:).  
a is any simple value. It replaces the empty list, []. 

Epiphany on designing functions
Design functions by first providing a series of generic arguments that are replacements for parts 
in the thing to be operated on. Some of the replacements are functions, others are simple values. 
Let f denote a replacement that is a function and let a denote a simple value:

myfunction f a 

a is the replacement for the base case (when the thing being operated on is empty). f is the 
replacement for the constructor.

The last argument is the thing to be operated on. It consists of values and constructors, which I 
denote by v and c, respectively:

myfunction f a (v c v)

On the right hand side of the equal sign replace the constructor with a replacement:

myfunction f a () = a 
myfunction f a (v c v) = f v v

Many interesting functions can be defined by gluing together redtree with other functions. For 
example, the sum of all the labels in a tree can be found using:

sumtree = redtree (+) (+) 0

The first (+) adds the number in Node to the sum of its subtrees. The second (+) adds the sum of 
the first subtree to the sum of the rest of the subtrees. The 0 is returned by redtree' when the list is 
empty.

sumtree (Node 1 [Node 2 [Node 3 []], Node 4 []]) -- returns 10

The product of all the labels in a tree can be found using:

productTree = redtree (*) (*) 1

The first (*) multiplies the number in Node to the product of its subtrees. The second (*) 
multiplies the product of the first subtree to the product of the rest of the subtrees.



productTree (Node 1 [Node 2 [Node 3 []], Node 4 []]) -- returns 24

What does this function do:

redtree (+) (*) 1

It adds the number in Node to the product of its subtrees. 1 is returned on an empty list. Let's 
apply it to a few trees.
-----------------------------------------------------------
Tree #1

1 + 1 -- returns 2
-----------------------------------------------------------
Tree #2

1 + (2 + 1) -- returns 4
-----------------------------------------------------------
Tree #3

1 + ((2 + 1) * (3 + 1)) -- returns 13
-----------------------------------------------------------
Tree #4



1 + ((2 + (4 + 1)) * (3 + 1)) -- returns 29
-----------------------------------------------------------

Problem #10: Define a function labels that produces a list of all the labels in a tree (i.e., labels 
serializes the tree to a list).

For this tree:

labels produces this list:

[1,2,4,3]

Notice that the tree is serialized to a list in a depth-first fashion. 

Recall function append. It appends list k onto list j:

append [1, 2] [3, 4] -- returns [1,2,3,4]



And recall the definition of redtree and redtree':

redtree f g a (Node label subtrees) = f label (redtree' f g a subtrees)
redtree' f g a ((:) subtree rest) = g (redtree f g a subtree) (redtree' f g a rest)
redtree' f g a [] = a

To solve the problem we will use (:) as the value of f. (:) will prepend a Node's label onto a list of 
its subtree's labels. 

We will use append as the value of g. append will combine the list of labels from the first subtree 
with the list of labels from the remaining subtrees. 

We will use [] as the value of a.

Here is the definition of labels:

labels = redtree (:) append []

That is a fantastic definition.

Lesson Learned
Before I read this section of Hugh's paper I had written my own function to print (serialize) all 
the labels in a tree as a list:

printTree :: Treeof a -> [a]
printTree (Node a []) = [a]
printTree (Node a [Node b []]) = a : b : []
printTree (Node a [Node b [], c]) = a : (printTree (Node b [c]))
printTree (Node a [Node b [c]]) = a : b : (printTree (c))
printTree (Node a [Node b [c], d]) = a : (printTree (c)) ++ (printTree (Node b [d]))

Contrast with Hugh's definition:

labels = redtree (:) append []

I am embarrassed at my implementation. Rather than gluing together modules, I brute-forced 
solved the problem.

This is a valuable lesson for me: Write code by gluing together modules. Don't brute-force 
implementations.

Recall that map is a standard function which applies its argument (a function) to every element of 
a list. Our final problem creates an analogous function for the tree data structure. We will call the 
function maptree.

Problem #11: Define a function maptree that applies a function h to each label in a tree.



Again, here's the definition of redtree and redtree':

redtree f g a (Node label subtrees) = f label (redtree' f g a subtrees)
redtree' f g a ((:) subtree rest) = g (redtree f g a subtree) (redtree' f g a rest)
redtree' f g a [] = a

We want maptree to apply h to the Node's label and then reconstruct Node with the updated label. 
So use (Node . h) as the value of f.

Use (:) to combine the mapped list of labels from the first subtree with mapped list of labels from 
the remaining subtrees. So use (:) as the value of g.

For an empty list return []. So use [] as the value of a.

Here is the definition maptree:

maptree f = redtree (Node . f) (:) []

That is another fantastic definition.

Let's take an example which uses maptree. Recall the function double:

double n = 2*n

Let's use it to double the value of each label in a tree. Then let's list the tree's values:

sampleTree = Node 1 [Node 2 [Node 4 []], Node 3 []]

sampleTreeDoubled = maptree double sampleTree

labels sampleTreeDoubled -- returns [2,4,8,6]

Final Comments
We are done with our discussion of the first kind of glue. We have accomplished much. 

All this was achieved because functional languages allow functions to be expressed as 
combinations of parts – a general function and some particular specializing functions. Once 
defined, such higher-order functions allow many operations to be programmed very easily.

Whenever a new datatype is defined, higher-order functions should be written for processing it. 
This makes manipulating the datatype easy, and also localizes knowledge about the details of its 
representation. 



Challenge Myself
Now it's time to challenge myself and see if I have learned the valuable lessons presented in 
Hughes' marvelous paper. I will attempt to create a function treecontains x that returns True if the 
tree contains x and False otherwise. Success means that I implement treecontains x by simply 
combining existing parts. 

Here's the definition of redtree and redtree':

redtree f g a (Node label subtrees) = f label (redtree' f g a subtrees)
redtree' f g a ((:) subtree rest) = g (redtree f g a subtree) (redtree' f g a rest)
redtree' f g a [] = a

I want redtree to apply (== x) to a Node's label and then "or" its result with the result of checking 
for the presence of x in the subtrees. So I will use ((||) . (== x)) as the value of f.

I want to "or" the results of checking the labels from the first subtree with the results of checking 
the labels from the remaining subtrees. So I will use (||) as the value of g.

For an empty list return False. So I will use False as the value of a.

Here's my definition of treecontains x:

treecontains x = redtree ((||) . (== x)) (||) False

I did a couple tests and it works beautifully:

treecontains 4 (Node 1 [Node 2 [Node 4 []], Node 3 []]) -- returns True

treecontains 9 (Node 1 [Node 2 [Node 4 []], Node 3 []]) -- returns False

Without any coding I was able to implement a new function, simply by gluing together a general 
function (redtree) with some specialized functions and values (==,||, and False). This is so cool.

This is the end of half of Hugh's paper. The next half discusses how to achieve better modularity 
using:

Function composition, accompanied by lazy evaluation

I am starting work on that now. Stay tuned…

Haskell Code
Here is all the Haskell code in one place. Place this in a file reduce.hs and you can immediately 
start using the functions.

import Prelude hiding (sum, product)



reduce f a [] = a
reduce f a (x:xs) = f x (reduce f a xs)

sum = reduce (+) 0

t1 = sum [1, 2, 3, 4] -- returns 10

product = reduce (*) 1

t2 = product [1, 2, 3, 4] -- returns 24

anytrue = reduce (||) False

t3 = anytrue [False, False, True, False] -- returns True

alltrue = reduce (&&) True

t4 = alltrue [False, False, True, False] -- returns False

identity = reduce (:) []

t5 = identity "Hello World" -- returns "Hello World"

append a b = reduce (:) b a 

t6 = append [1, 2] [3, 4] -- returns [1, 2, 3, 4]

doubleall = reduce doubleandconstruct []
           
doubleandconstruct num list = (:) (2*num) list

t7 = doubleall [1, 2, 3, 4] -- returns [2, 4, 6, 8]

doubleall_v2 = reduce doubleandconstruct_v2 []
               
doubleandconstruct_v2 = fandconstruct double
                        
double n = 2*n
                        
fandconstruct f x list = (:) (f x) list

t8 = doubleall_v2 [1, 2, 3, 4] -- returns [2, 4, 6, 8]

doubleall_v3 = reduce doubleandconstruct_v3 []
               
doubleandconstruct_v3 = fandconstruct_v2 double
                        
fandconstruct_v2 f = (:) . f

t9 = doubleall_v3 [1, 2, 3, 4] -- returns [2, 4, 6, 8]

doubleall_v4 = reduce ((:) . double) []
               



t10 = doubleall_v4 [1, 2, 3, 4] -- returns [2, 4, 6, 8]

doubleall_v5 = map double
               
t11 = doubleall_v5 [1, 2, 3, 4] -- returns [2, 4, 6, 8]

summatrix = sum . map sum

t12 = summatrix [[1,2,3,4],[1,2,3,4]] -- returns 20

data Treeof a = Node a [Treeof a]

tree1 :: Treeof Int
tree1 = Node 1 []

tree2 :: Treeof Int
tree2 = Node 1 [Node 2 []]

tree3 :: Treeof Int
tree3 = Node 1 [Node 2 [], Node 3 []]

tree4 :: Treeof Int
tree4 = Node 1 [Node 2 [Node 3 []]]

tree5 :: Treeof Int
tree5 = Node 1 [Node 2 [Node 4 []], Node 3 []]

-- See function "labels" below for a much more
-- elegant way of accomplishing the same thing
-- as this printTree function. This is an extremely
-- valuable lesson. In my printTree function I
-- am not gluing together modules. I am brute-force
-- solving the problem.

printTree :: Treeof a -> [a]
printTree (Node a []) = [a]
printTree (Node a [Node b []]) = a : b : []
printTree (Node a [Node b [], c]) = a : (printTree (Node b [c]))
printTree (Node a [Node b [c]]) = a : b : (printTree (c))
printTree (Node a [Node b [c], d]) = a : (printTree (c)) ++ (printTree (Node b [d]))
 

redtree f g a (Node label subtrees) = f label (redtree' f g a subtrees)

redtree' f g a ((:) subtree rest) = g (redtree f g a subtree) (redtree' f g a rest)

redtree' f g a [] = a

sumtree = redtree (+) (+) 0 

t13 = sumtree tree5 -- returns 10

productTree = redtree (*) (*) 1 



t14 = productTree tree5 -- returns 24

h = redtree (+) (*) 1

t15 = h tree5 -- returns 29

labels = redtree (:) append []

t16 = labels tree5 -- returns [1,2,3,4]

maptree f = redtree (Node . f) (:) []

t17 = maptree double tree5

t18 = labels t17 -- returns [2,4,8,6]

sampleTree = Node 1 [Node 2 [Node 4 []], Node 3 []]
sampleTreeDoubled = maptree double sampleTree
sampleTreeList = labels sampleTreeDoubled

treecontains x = redtree ((||) . (== x)) (||) False

t19 = treecontains 4 tree5 -- returns True

t20 = treecontains 9 tree5 -- returns False
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