
1

Lecture 7

Exceptions and I/O

Overview of the exception hierarchy
A simplified diagram of the exception hierarchy in Java

Throwable

Error Exception

IOException
Runtime

Exception

� All exceptions extend the class Thr owabl e, which immediately
splits into two branches: Er r or and Except i on

� Er r or : internal errors and resource exhaustion inside the Java
runtime system. Little you can do.

� Except i on: splits further into two branches.

2

Focus on the Except i on branch

� Two branches of Except i on

� exceptions that derived from Runt i meExcept i on

� examples: a bad cast, an out-of-array access
� happens because errors exist in your program. Your fault.

� those not in the type of Runt i meExcept i on

� example: trying to open a malformed URL
� program is good, other bad things happen. Not your fault.

� Checked exceptions vs. unchecked exceptions
� Unchecked exceptions: exceptions derived from the class Er r or or the

class Runt i meExcept i on

� Checked exceptions: all other exceptions that are not unchecked
exceptions

� If they occur, they must be dealt with in some way.

� The compiler will check whether you provide exception handlers for checked
exceptions which may occur

Declaring to throw checked exceptions

� A java method or constructor should be declared to throw
exceptions under two situations:
1. It calls another method that throws a checked exception
2. It throws a checked exception with the t hr ow statement inside its body

� Declare a method or constructor to throw an exception (or
exceptions) by using t hr ows clause in its header
E.g
Single exception:
publ i c Fi l eI nput St r eam(St r i ng s) t hr ows Fi l eNot FoundExcept i on

Multiple exception:
publ i c I mage l oad(St r i ng s) t hr ows EOFExcept i on, I OExcept i on

� You should NOT declare an unchecked exception after t hr ows !
They are either outside of your control, or should be avoid
completely by correcting your code.

3

Using t hr ow to throw an exception
� Throw an exception under some bad situations

E.g: a method named r eadDat a is reading a file whose header says it
contains 700 characters, but it encounters the end of the file after 200
characters. You decide to throw an exception when this bad situation
happens by using the t hr ow statement

t hr ow (new EOFExcept i on()) ;
or,

EOFExcept i on e = new EOFExcept i on() ;
t hr ow e;

the entire method will be
St r i ng r eadDat a(Scanner i n) t hr ows EOFExcept i on {

. . .
whi l e(. . .) {

i f (! i n. hasNext ()) / / EndOf Fi l e encount er ed {
i f (n < l en)

t hr ow (new EOFExcept i on()) ;
}
. . .

}
r et ur n s; }

}

Using t hr ow to throw an exception (cont.)

� In the method body you can only throw exceptions
which are of the same type or the subtype of the
exceptions declared after throws in the method header

� If you can find an appropriate exception class in the
library, make an object of that class and throw it;
otherwise, you design your own exception class

4

Creating new exception types
� Exceptions are objects. New exception types should extend

Except i on or one of its subclasses

� Why creating new exception types?
1. describe the exceptional condition in more details than just the string

that Except i on provides

2. the type of the exception is an important part of the exception data –
programmers need to do some actions exclusively to one type of
exception conditions, not others

E.g. suppose there is a method to update the current value of a named attribute of
an object, but the object may not contain such an attribute currently. We want an
exception to be thrown to indicate the occurring of if such a situation
publ i c c l ass NoSuchAt t r i but eExcept i on ext ends Except i on {

publ i c St r i ng at t r Name;
publ i c NoSuchAt t r i but eExcept i on (St r i ng name) {

super (“ No at t r i but e named \ ” ” + name + “ \ ” f ound”) ;
at t r Name = name;

}
}

Catching exceptions

� Checked exceptions handling is strictly enforced. If you invoke a
method that lists a checked exception in its throws clause, you
have three choices

1. Catch the exception and handle it

2. Declare the exception in your own t hr ows clause, and let the
exception pass through your method (you may have a f i nal l y
clause to clean up first)

3. Catch the exception and map it into one of your exceptions by
throwing an exception of a type declared in your own t hr ows clause

5

t r y/ cat ch clause (1)
� Basic syntax of t r y / cat ch block

t r y {
statements

} cat ch(except i onType1 i dent i f i er 1) {
handler f or type1

} cat ch(except i onType2 i dent i f i er 1) {
handler for t ype2

} . . .

� If no exception occurs during the execution of the statements in the t r y
clause, it finishes successfully and all the cat ch clauses are skipped

� If any of the code inside the t r y block throws an exception, either
directly via a t hr ow or indirectly by a method invoked inside it

1. The program skips the remainder of the code in the t r y block
2. The catch clauses are examined one by one, to see whether the type of the

thrown exception object is compatible with the type declared in the cat ch.
3. If an appropriate cat ch clause is found, the code inside its body gets

executed and all the remaining cat ch clauses are skipped.
4. If no such a cat ch clause is found, then the exception is thrown into an

outer t r y that might have a cat ch clause to handle it

� A cat ch clause with a superclass exceptionType cannot precede a
cat ch clause with a subclass exceptionType

t r y/ cat ch clause (2)
� Example

publ i c voi d r ead(St r i ng f i l eName) {
try {

I nput St r eam i n = new Fi l eI nput St r eam(f i l eName) ;
i nt b;

//the r ead() method below is one which will throw an IOException
whi l e ((b = i n. r ead()) ! = - 1) {

process input
}

} catch (IOException e) {
except i on. pr i nt St ackTr ace() ;

}
}

another choice for this situation is to do nothing but simply pass the exception on to
the caller of the method

publ i c voi d r ead(St r i ng f i l eName) throws IOException {
I nput St r eam i n = new Fi l eI nput St r eam(f i l eName) ;
i nt b;
whi l e ((b = i n. r ead()) ! = - 1) {

process input
}

}
� If you call a method that throws a checked exception, you must either handle it or

pass it on. Check the Java API documentation to see what exceptions will be thrown!

6

t r y/ cat ch clause (3)

� You can throw an exception in a cat ch clause. Typically you do this
because you want to change the exception type to indicate the failure
of your subsystem

t r y {
access the database

} cat ch (SQLExcept i on e) {
Thr owabl e se = new Ser vl et Except i on(“ dat abase

er r or ”) ;
se. set Cause(e) ;
t hr ow se;

}

� When the exception is caught, the original exception can be retrieved.
This chaining technique allows you to throw high-level exceptions in
subsystems without losing details of the original failure

Thowabl e e = se. get Cause() ;

f i nal l y clause (1)
� You may want to do some actions whether or not an exception is

thrown. f i nal l y clause does this for you
Gr aphi cs g = i mage. get Gr aphi cs() ;
t r y {

/ / 1
code that might throw exceptions
/ / 2

} cat ch (I OExcept i on e) {
/ / 3
show error dialog (// some code which may throw exceptions)
/ / 4

} f i nal l y {
g. di spose() ; (// some code which will not throw exceptions)
/ / 5

} / / 6

� No exception is thrown:
� An exception is thrown and caught by the cat ch clause

� The cat ch clause doesn’t throw any other exception:
� The cat ch clause throws an exception itself: , and the exception is

thrown back to the caller of this method
� An exception is thrown but not caught by the cat ch clause: , and

the exception is thrown back to the caller of this method

1, 2, 5, 6

1, 3, 4, 5, 6
1, 3, 5

1, 5

7

f i nal l y clause (2)

� You can use a f i nal l y clause without a cat ch clause
� Sometimes the f i nal l y clause can also thrown an exception

Example

publ i c bool ean sear chFor (St r i ng f i l e, St r i ng wor d)
t hr ows St r eamExcept i on

{
St r eam i nput = nul l ;
t r y {

some code which may throw an StreamException
} f i nal l y {

i nput . c l ose() ; // this may throw an IOException
}

}

� If the try clause throws a St r eamExcept i on and the f i nal l y clause
throws an I OExcept i on, the original exception is lost and the
I OExcept i on is thrown out instead – a situation you’d better avoid

The I/O package - overview

� The j ava. i o package defines I/O in terms of streams – ordered
sequences of data that have a source (input streams) or a
destination (output streams)

� Two major parts:
1. byte streams

� 8 bits, data-based
� input streams and output streams

2. character streams
� 16 bits, text-based
� readers and writers

� Check out Java API documentation for details about java.io

8

Byte streams
� Two parent abst r act classes: I nput St r eamand Out put St r eam

� Reading bytes:
� I nput St r eamclass defines an abstract method

publ i c abst r act i nt r ead() t hr ows I OExcept i on

� Designer of a concrete input stream class overrides this method to provide
useful functionality.

� E.g. in the Fi l eI nput St r eamclass, the method reads one byte from a file

� I nput St r eamclass also contains nonabstract methods to read an
array of bytes or skip a number of bytes

� Writing bytes:

� Out put St r eamclass defines an abstract method
publ i c abst r act voi d wr i t e(i nt b) t hr ows I OExcept i on

� Out put St r eamclass also contains nonabstract methods for tasks such
as writing bytes from a specified byte array

� Close the stream after reading of writing to it to free up limited
operating system resources by using cl ose()

Example code1:
i mpor t j ava. i o. * ;
c l ass Count Byt es {

publ i c st at i c voi d mai n(St r i ng[] ar gs) t hr ows I OExcept i on {
Fi l eI nput St r eam i n = new Fi l eI nput St r eam(ar gs[0]) ;
i nt t ot al = 0;
whi l e (i n. r ead() ! = - 1)

t ot al ++;
i n. c l ose() ;
Syst em. out . pr i nt l n(t ot al + ” byt es”) ;

}
}

Example code2:
i mpor t j ava. i o. * ;
c l ass Tr ansl at eByt e {

publ i c st at i c voi d mai n(St r i ng[] ar gs) t hr ows I OExcept i on {
byt e f r om = (byt e) ar gs[0] . char At (0) ;
byt e t o = (byt e) ar gs[1] . char At (0) ;
i nt x;
whi l e((x = Syst em. i n. r ead()) ! = - 1)

Syst em. out . wr i t e(x == f r om ? t o : x) ;

}
}

If you run “ j ava Tr ansl at eByt e b B” and enter text bi gboy via the
keyboard the output will be: Bi gBoy!

9

Character streams

� Two parent abst r act classes for characters: Reader and Wr i t er .
Each support similar methods to those of its byte stream
counterpart–I nput St r eamand Out put St r eam, respectively

� The standard streams—Syst em. i n, Syst em. out and
Syst em. er r —existed before the invention of character streams.
So they are byte streams though logically they should be character
streams.

Conversion between byte and character streams
� The conversion streams I nput St r eamReader and

Out put St r eamReader translate between Unicode and byte
streams
� publ i c I nput St r eamReader (I nput St r eam i n)
� publ i c I nput St r eamReader (I nput St r eam i n, St r i ng encodi ng)
� publ i c Out put St r eamWr i t er (Out put St r eam out)
� publ i c Out put St r eamWr i t er (Out put St r eam out , St r i ng encodi ng)

� r ead method of I nput St r eamReader read bytes from their
associated I nput St r eamand convert them to characters using the
appropriate encoding for that stream

� wr i t e method of Out put St r eamWr i t er take the supplied
characters, convert them to bytes using the appropriate encoding
and write them to its associated Out put St r eam

� Closing the conversion stream also closes the associated byte
stream – may not always desirable

10

Working with files

� Sequential-Access file: the Fi l e streams—Fi l eI nput St r eam,
Fi l eOut put St r eam, Fi l eReader and Fi l eWr i t er —allow you
to treat a file as a stream to input or output sequentially
� Each file stream type has three types of constructors

� A constructor that takes a St r i ng which is the name of the file
� A constructor that take a Fi l e object which refers to the file

� A constructor that takes a Fi l eDescr i pt or object

� Random-Access file: RandomAccessFi l e allow you to read/write
data beginning at the a specified location
� a file pointer is used to guide the starting position
� It’s not a subclass of I nput St r eam, Out put St r eam, Reader or

Wr i t er because it supports both input and output with both bytes and
characters

Example of RandomAccessFile
i mpor t j ava. i o. * ;
c l ass Fi l ecopy {

publ i c st at i c voi d mai n(St r i ng ar gs[]) {
RandomAccessFi l e f h1 = nul l ;
RandomAccessFi l e f h2 = nul l ;
l ong f i l esi ze = - 1;
byt e[] buf f er 1;

t r y {
f h1 = new RandomAccessFi l e(ar gs[0] , “ r ”) ;
f h2 = new RandomAccessFi l e(ar gs[1] , “ r w”) ;

} cat ch (Fi l eNot FoundExcept i on e) {
Syst em. out . pr i nt l n(“ Fi l e not f ound”) ;
Syst em. exi t (100) ;

}

t r y {
f i l es i ze = f h1. l engt h() ;
i nt buf si ze = (i nt) f i l esi ze/ 2;
buf f er 1 = new byt e[buf si ze] ;
f h1. r eadFul l y(buf f er 1, 0, buf s i ze) ;
f h2. wr i t e(buf f er 1, 0, buf si ze) ;

} cat ch (I OExcept i on e) {
Syst em. out . pr i nt l n(" I O er r or occur r ed! ") ;
Syst em. exi t (200) ;

}
}

}

11

The Fi l e class

� The Fi l e class is particularly useful for retrieving information about a
file or a directory from a disk.
� A Fi l e object actually represents a path, not necessarily an underlying file

� A Fi l e object doesn’t open files or provide any file-processing capabilities

� Three constructors
� publ i c Fi l e(St r i ng name)
� publ i c Fi l e(St r i ng pat hToName, St r i ng name)
� publ i c Fi l e(Fi l e di r ect or y, St r i ng name)

� Main methods
� bool ean canRead() / bool ean canWr i t e()
� bool ean exi st s()
� bool ean i sFi l e() / bool ean i sDi r ect or y() / bool ean i sAbsol ut e()
� St r i ng get Absol ut ePat h() / St r i ng get Pat h()
� St r i ng get Par ent ()
� St r i ng get Name()
� l ong l engt h()
� l ong l ast Modi f i ed()

Add more efficiency

� Buf f er edReader reads text from a character-input stream,
buffering characters so as to provide for the efficient reading of
characters, arrays, and lines.

Buf f er edReader (Reader i n)

� For example:

� to wrap an I nput St r eamReader inside a Buf f er edReader

Buf f er edReader i n
= new Buf f er edReader (new I nput St r eamReader (Syst em. i n)) ;

� to wrap a Fi l eReader inside a Buf f er edReader

Buf f er edReader i n
= new Buf f er edReader (new Fi l eReader (“ f i l eName”)) ;

then you can invoke i n. r eadLi ne() to read from the file line
by line

12

import java.io.*;
public class EfficientReader {

public static void main (String[] args) {

try {
BufferedReader br = new BufferedReader(new FileReader(args[0]));

// get line
String line = br.readLine();

// while not end of file… keep reading and displaying lines
while (line != null) {

System.out.println("Read a line:");
System.out.println(line);
line = br.readLine();

}
// close stream
br.close();

} catch(FileNotFoundException fe) {
System.out.println("File not found: “+ args[0]");

} catch(IOException ioe) {
System.out.println("Can’t read from file: “+args[0]);

}
}

}

Supplemental reading

� Handling Errors with Exceptions

http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html

� Reading and Writing
http://java.sun.com/docs/books/tutorial/essential/io/index.html

� File Access and Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/Basic
Java1/data.html

