
1

Collections

Lecture 6

Concept
� A collection is a data structure – actually, an object – to hold other

objects, which let you store and organize objects in useful ways for
efficient access

� Check out the j ava. ut i l package! Lots of interfaces and classes
providing a general collection framework. Programmers may also
provide implementations specific to their own requirements

� Overview of the interfaces and concrete classes in the collection
framework

Collection

Set

SortedSet

List

HashSet ArrayList

LinkedList

TreeSet

Map

SortedMap
WeakHashMap

HashMap

TreeMap

ListIterator

Iterator

2

Root interface – Collection (1)

� Methods working with an individual collection
� publ i c i nt size()
� publ i c bool ean isEmpty()
� publ i c bool ean contains(Object elem)
� publ i c bool ean add(Object elem)

� Depends on whether the collection allows duplicates
� publ i c bool ean remove(Object elem)
� publ i c bool ean equals(Object o)
� publ i c i nt hashCode()
� publ i c I t er at or iterator()
� publ i c Obj ect [] toArray()

� Returns a new array containing references to all the elements of the
collection

� publ i c Obj ect [] toArray(Object[] dest)
� What is returned depends on whether the elements in the collection fit in

dest
� If the type of dest is not compatible with the types of all elements in the

collection, an exception is thrown

Root interface – Collection (2)

� Primary methods operating in bulk from another collection
� publ i c bool ean containsAll(Collection coll)
� publ i c bool ean addAll(Collection coll)

� Returns true if any addition succeeds
� publ i c bool ean removeAll(Collection coll)

� Returns true if any removal succeeds
� publ i c bool ean retainAll(Collection coll)

� Removes from the collection all elements that are not elements of col l
� publ i c voi d clear()

� Remove all elements from this collection

� The SDK does NOT provide any direct implementations of the
Col l ect i on interface
� Most of the actual collection types implement this interface, usually by

implementing an extended interface such as Set or Li st

� This interface is typically used to pass collections around and
manipulate them where maximum generality is desired.

3

Iteration - Iterator
� The Col l ect i on interface defines an i t er at or method to

return an object implementing the I t er at or interface.
� It can access the elements in a collection without exposing its internal

structure.
� There are NO guarantees concerning the order in which the elements

are returned

� Three defined methods in Iterator interface
� publ i c bool ean hasNext() – returns true if the iteration has more

elements

� publ i c Obj ect next() – returns the next element in the iteration
� An exception will be thrown if there is no next element
� What’s returned is an Obj ect object. You may need special casting!

� publ i c voi d remove() – remove from the collection the element
last returned by the iteration

� can be called only once per call of next , otherwise an exception is
thrown

classical routine of using iterator:

publ i c voi d r emoveLongSt r i ngs (Col l ect i on col l , i nt
maxLen) {

I t er at or i t = col l . iterator() ;
whi l e (i t . hasNext()) {

St r i ng st r = (St r i ng) i t . next();
i f (s t r . l engt h() > maxLen)
i t . remove()

}
}

4

Iteration - ListIterator

� Li st er I t er at or interface extends I t er at or interface. It adds
methods to manipulate an ordered Li st object during iteration

� Methods
� publ i c bool ean hasNext()/ publ i c bool ean hasPrevious()

� publ i c Obj ect next()/ publ i c Obj ect previous()

� publ i c Obj ect nextIndex()/ publ i c Obj ect previousIndex()

� When it’s at the end of the list, next I ndex() will return l i s t . s i ze()

� When it’s at the beginning of the list, pr evi ousI ndex() will return -1

� public void remove() – remove the element last returned by next () or
pr evi ous()

� public void add(Object o)– insert the object o into the list in front of the
next element that would be returned by next () , or at the end if no next
element exists

� public void set(Object o) – set the element last returned by next () or
pr evi ous() with o

� They do NOT provide the snapshot guarantee – if the content of the
collection is modified when the iterator is in use, it can affect the
values returned by the methods

i mpor t j ava. ut i l . * ;

publ i c c l ass I t er at or Test {
publ i c st at i c voi d mai n (St r i ng ar gs[]) {

Ar r ayLi st a = new Ar r ayLi st () ;
a. add(" 1") ;
a. add(" 2") ;
a. add(" 3") ;

I t er at or i t = a. i t er at or () ;
whi l e(i t . hasNext ()) {

St r i ng s = (St r i ng) (i t . next ()) ;
i f (s. equal s(“ 1")) {

a. set (2, “ changed") ;
}

Syst em. out . pr i nt l n(s) ;
}

}
}

Potential problem of Iterator/ListIterator

Output?
1
2
changed

5

Potential problem of Iterator/ListIterator (cont.)

� A snapshot will return the elements as they were when the
I t er at or / Li st I t er at or object was created, which is
unchangeable in the future

� If you really need a snapshot, you can make a simple copy of the
collection

� Many of the iterators defined in the j ava. ut i l package are in
the type of fail-fast iterators

� They detect when a collection has been modified

� When a modification is detected, other than risk performing an
action whose behavior may be unsafe, they fail quickly and cleanly
by throwing an exception –
Concur r ent Modi f i cat i onExcept i on

i mpor t j ava. ut i l . * ;

publ i c c l ass I t er at or Test 2 {
publ i c st at i c voi d mai n (St r i ng ar gs[]) {

Ar r ayLi st a = new Ar r ayLi st () ;
a. add(“ 1”) ;
a. add(“ 2”) ;
a. add(“ 3”) ;

I t er at or i t = a. i t er at or () ;

a. add(“ 4”) ;

whi l e(i t . hasNext ()) {
St r i ng s = (St r i ng) (i t . next ()) ;
Syst em. out . pr i nt l n(s) ;

}
}

}

%> javac IteratorTest2.java
%> java IteratorTest2

Exception in thread “main” java.util.ConcurrentModificationException

6

List
� A Li st is an ordered Collection which allows duplicate

elements. Its element indices range from 0 to
(l i s t . s i ze() -1)

� It adds several methods for an ordered collection
� The interface Li st is implemented by two classes

1. Ar r ayLi s t : a resizable-array implementation of the Li st
interface

� Adding or removing elements at the end, or getting an element at a specific
position is simple – O(1)

� Adding or removing element from the middle is more expensive – O(n-i)
� Can be efficiently scanned by using the indices without creating an

I t er at or object, so it’s good for a list which will be scanned frequently

2. Li nkedLi st : a doubly-linked list
� Getting an element at position i is more expensive – O(i)
� A good base for lists where most of the actions are not at the end

� An example of using Li nkedLi st (output)

Set and SortedSet

� The Set interface provides a more specific contract for its methods,
but adding no new methods of its own. A Set is a Col l ect i on
that contains UNIQUE elements.

� The Sor t edSet extends Set to specify an additional contract –
iterators on such a set will always return the elements in a
specified order
� By default it will be the elements’ natural order which is determined by

the implementation of Compar abl e interface
� You can specify a Compar at or object to order the elements instead

of the natural order

� There are two implementations of Set in the collection framework
� HashSet – a Set implemented using a hashtable
� TreeSet – a Sor t edSet implemented in a balanced tree structure

� An example of using a HashSet (output)

7

Map and SortedMap
� The Map interface does not extend Col l ect i on interface because

a Map contains key-value pairs, not only keys. Duplicate keys are
not allowed in a Map. It’s implemented by classes HashMap and
Tr eeMap.

� There are methods to view the map using collections. For example:
publ i c Set keySet () and publ i c Col l ect i on val ues() .
� The collections returned by these methods are backed by the Map, so

removing an element from one these collections removes the
corresponding key/value pair from the map

� You cannot add elements to these collections
� If you iterate through the key or value sets, they may return values from

their respective sets in any order

� Interface Sor t edMap extends Map and maintains its keys in sorted
order. Class Tr eeMap implements Sor t edMap.

� An example using HashMap (output)

Synchronized wrappers and the Col l ect i ons class (1)

� The Col l ect i ons class contains static utility methods which can
be roughly classified into two groups: those provide wrapped
collections and those don’t.

� All the collection implementations provided in j ava. ut i l we’ve
seen so far are unsynchronized
� concurrent access to a Col l ect i on by multiple threads could cause

indeterminate results or fatal errors.
� you can use synchronization wrappers for those collections that might

be accessed by multiple threads to prevent potential threading problems.

� Methods in the Col l ect i ons class to get a synchronized wrapper
� Collection synchr oni zedCol l ect i on(Col l ect i on c)

� Set synchr oni zedSet (Set s)

� SortedSet synchr oni zedSor t edSet (Sor t edSet s)

� List synchr oni zedLi st (Li st l)

� Map synchr oni zedMap(Map m)

� SortedMap synchr oni zedSor t edMap(Sor t edMap m)

8

Synchronized wrappers and the Col l ect i ons class (2)

� The above methods return wrappers whose methods are fully
synchronized, and so are safe to use from multiple threads

Example
Map unSyncMap = new HashMap() ;
Map syncMap = Col l ect i ons. synchr oni zedMap(unSyncMap) ;

� synchMap has all relevant methods synchronized, passing all calls
through to the wrapped map (unSynchMap)

� there is actually only one map, but with two different views. So
modifications on either map is visible to the other

� the wrapper synchronizes on itself, so you can use syncMap to
synchronize access, and then use unsyncMap safely inside such code

synchr oni zed (syncMap) {
f or (i nt i =0; i < keys. l engt h; i ++)

unSyncMap. put (keys[i] , val ues[i]) ;
}

HashMap

synchronized
wrapper

syncMap

unSyncMap elements

Unmodifiable wrappers and the Col l ect i ons class (1)

� The Col l ect i ons class contains a set of methods that return
unmodifiable wrappers for collections: attempts to modify the returned
set, whether direct or via its iterator, result in an
Unsuppor t edOper at i onExcept i on

� The contents of an unmodifiable wrapper can change, but can only through
the original collection, not through the wrapper itself

� Six methods to return unmodifable wrappers:
� Col l ect i on unmodi f i abl eCol l ect i on(Col l ect i on c)

� Set unmodi f i abl eSet (Set s)

� Sor t edSet unmodi f i abl eSor t edSet (Sor t edSet s)

� Li st unmodi f i abl eLi st (Li st l)

� Map unmodi f i abl eMap(Map m)

� Sor t edMap unmodi f i abl eSor t edMap(Sor t edMap m)

9

Example
Original: it’s dangerous that the array’s content can be changed

publ i c St r i ng sui t s[] = {
“ Hear t s” , “ Cl ubs” , “ Di amonds” , “ Spades” } ;

Using the unmodifiable wrapper to prevent the danger:
pr i vat e St r i ng sui t sNames[] = {

“ Hear t s” , “ Cl ubs” , “ Di amonds” , “ Spades” } ;

publ i c f i nal Li st sui t s =
Col l ect i ons. unmodi f i abl eLi st (Ar r ays. asLi st (sui t Names

) ;

� The unmodifiable wrapper offers read-only access to
others, while the read-write access is still available to the
code itself by retaining a reference to the wrapped
collection (the original collection)

Unmodifiable wrappers and the Collections class (2)

Abstract implementations

� The collection framework provides a set of abstract implementations
for you to design your own implementation of relevant collection
interfaces to satisfy your particular needs

� The set of abstract classes:
� Abst r act Col l ect i on

� Abst r act Set

� Abst r act Li st

� Abst r act Sequent i al Li st

� Abst r act Map

10

The legacy collection types

� The package j ava. ut i l contains some other legacy collections
than those we just learned. They are still in wide use in existing
code and will continue to be used until programmers shift over to the
new types

� The set of legacy collections
� Enumer at i on – analogous to I t er at or

� Vect or – analogous to Ar r ayLi st

� St ack – a subclass of Vect or

� Di ct i onar y – analogous to Map interface

� Hasht abl e – analogous to HashMap

� Pr oper t i es – a subclass of HashTabl e

