
1

Lecture 5: InterfacesLecture 5: Interfaces

conceptconcept

• An i nt er f ace is a way to describe what classes should
do, without specifying how they should do it. It’s not a
class but a set of requirements for classes that want to
conform to the interface

E.g. publ i c i nt er f ace Compar abl e
{

i nt compar eTo(Obj ect ot her Obj ect) ;
}

this requires that any class implementing the Compar abl e
interface contains a compar eTo method, and this method must
take an Obj ect parameter and return an integer

2

Interface declarationsInterface declarations

• The declaration consists of a keyword
i nt er f ace, its name, and the members

• Similar to classes, interfaces can have three
types of members
– constants (fields)
– methods
– nested classes and interfaces

Interface member Interface member –– constantsconstants

• An interface can define named constants, which are
publ i c , st at i c and f i nal (these modifiers are
omitted by convention) automatically. Interfaces never
contain instant fields.

• All the named constants must be initialized
An example interface
I nt er f ace Ver bose {

i nt SI LENT = 0;
i nt TERSE = 1;
i nt NORMAL = 2;
i nt VERBOSE = 3;

voi d set Ver bosi t y (i nt l evel) ;
i nt get Ver bosi t y() ;

}

3

Interface member Interface member –– methodsmethods

• They are implicitly abst r act (omitted by
convention). So every method declaration
consists of the method header and a semicolon.

• They are implicitly publ i c (omitted by
convention). No other types of access modifiers
are allowed.

• They can’t be f i nal , nor st at i c

Modifiers of interfaces itselfModifiers of interfaces itself

• An interface can have different modifiers as
follows
– publ i c/ package(def aul t)

– abst r act

• all interfaces are implicitly abst r act

• omitted by convention

4

To implement interfaces in a classTo implement interfaces in a class
• Two steps to make a class implement an interface

1. declare that the class intends to implement the given interface by using
the i mpl ement s keyword

cl ass Empl oyee i mpl ement s Compar abl e { . . . }

2. supply definitions for all methods in the interface
publ i c i nt compar eTo(Obj ect ot her Obj ect) {

Empl oyee ot her = (Empl oyee) ot her Obj ect ;
i f (sal ar y < ot her . sal ar y) r et ur n - 1;
i f (sal ar y > ot her . sal ar y) r et ur n 1;
r et ur n 0; }

note: in the Compar abl e interface declaration, the method compar eTo() is
publ i c implicitly but this modifier is omitted. But in the Empl oyee class design,
you cannot omit the publ i c modifier, otherwise, it will be assumed to have
package accessibility

• If a class leaves any method of the interface undefined, the class
becomes abst r act class and must be declared abst r act

• A single class can implement multiple interfaces. Just separate the
interface names by comma

cl ass Empl oyee i mpl ement s Compar abl e, Cl oneabl e { . . . }

Instantiation properties of interfacesInstantiation properties of interfaces

• Interfaces are not classes. You can never use the new
operator to instantiate an interface.

publ i c i nt er f ace Compar abl e {
. . . }

Compar abl e x = new Compar abl e() ;

• You can still declare interface variables
Compar abl e x;

but they must refer to an object of a class that implements
the interface

cl ass Empl oyee i mpl ement s Compar abl e {
. . .

}
x = new Empl oyee() ;

5

Extending interfacesExtending interfaces

• Interfaces support multiple inheritance – an
interface can extend more than one interface

• Superinterfaces and subinterfaces

Example
publ i c i nt er f ace Ser i al i zabl eRunnabl e ext ends

j ava. i o. Ser i al i zabl e, Runnabl e {

. . .

}

Extending interfaces Extending interfaces –– about constants (1)about constants (1)

• An extended interface inherits all the constants from its
superinterfaces

• Take care when the subinterface inherits more than one
constants with the same name, or the subinterface and
superinterface contain constants with the same name —
always use sufficient enough information to refer to the
target constants

6

��������	�
����������������	�
��������

• When an interface inherits two or more constants with
the same name
– In the subinterface, explicitly use the superinterface name to

refer to the constant of that superinterface
E.g. i nt er f ace A {

i nt val = 1;
}

i nt er f ace B {
i nt val = 2;

}

i nt er f ace C ext ends A, B {
Syst em. out . pr i nt l n(“ A. val = “ + A. val) ;
Syst em. out . pr i nt l n(“ B. val = “ + B. val) ;

}

Tedious Details (2) Tedious Details (2)
• If a superinterface and a subinterface contain two constants

with the same name, then the one belonging to the
superinterface is hidden
1. in the subinterface

– access the subinterface-version constants by directly using its name
– access the superinterface-version constants by using the

superinterface name followed by a dot and then the constant name
E.g i nt er f ace X {

i nt val = 1; }

i nt er f ace Y ext ends X{
i nt val = 2;
i nt sum = val + X. val ; }

2. outside the subinterface and the superinterface
– you can access both of the constants by explicitly giving the interface

name.
E.g. in previous example, use Y. val and Y. sumto access constants val
and sumof interface Y, and use X. val to access constant val of interface X.

Y‘s val

X’s val

7

Tedious Details (3)Tedious Details (3)
• When a superinterface and a subinterface contain two constants

with the same name, and a class implements the subinterface
– the class inherits the subinterface-version constants as its static

fields. Their access follow the rule of class’s static fields access.
E. g cl ass Z i mpl ement s Y { }

/ / i nsi de t he c l ass
Syst em. out . pr i nt l n(“ Z. val : “ +val) ; / / Z. val = 2
/ / out si de t he cl ass
Syst em. out . pr i nt l n(“ Z. val : “ +Z. val) ; / / Z. val = 2

— object reference can be used to access the constants
� subinterface-version constants are accessed by using the object

reference followed by a dot followed by the constant name
� superinterface-version constants are accessed by explicit casting

E.g. Z v = new Z() ;
Syst em. out . pr i nt (“ v. val = “ + v. val

+“ , ((Y) v) . val = “ + ((Y) v) . val
+“ , ((X) v) . val = “ + ((X) v) . val) ;

output: v.val = 2, ((Y)v).val = 2, ((X)v).val = 1

Extending interfaces Extending interfaces –– about methodsabout methods

• If a declared method in a subinterface has the same signature as an
inherited method and the same return type, then the new declaration
overrides the inherited method in its superinterface. If the only
difference is in the return type, then there will be a compile-time
error

• An interface can inherit more than one methods with the same
signature and return type. A class can implement different interfaces
containing methods with the same signature and return type.

• Overriding in interfaces has NO question of ambiguity. The real
behavior is ultimately decided by the implementation in the class
implementing them. The real issue is whether a single
implementation can honor all the contracts implied by that method in
different interfaces

• Methods with same name but different parameter lists are
over l oaded

8

������������
��������������������
��������

See the examples:
Interface: Shape (Shape.java)

Class implementing this interface: Poi nt (Point.java)
Subclasses of Poi nt : Ci r c l e (Circle.java), Cyl i nder (Cylinder.java)

Test class: Test.java

�aThe usefulness of interfaces goes far beyond simply
publishing protocols for other programmers. Any function can have
parameters that are of interface type. Any object of a class that
implements the interface may be passed as an argument.

Marker interfaces and object cloningMarker interfaces and object cloning

• A marker (tagging) interface has neither methods nor constants, its
only purpose is to allow the use of i nst anceof in a type inquiry.
Cl oneabl e interface is such an example.

• Object clone: a clone method returns a new object whose initial
state is a copy of the current state of the object on which cl one was
invoked. Subsequent changes to the new clone object should not
affect the state of the original object.

• Three factors in writing a c l one method
– The empty Cloneable interface. You must implement it to provide a

clone method that can be used to clone an object
– The clone method implemented by the Object class performs a simple

clone by copying all fields of the original object to the new object
– The CloneNotSupportedException, which can be used to signal that a

class’s clone method shouldn’t have been invoked

9

Object cloning (1)Object cloning (1)
• The Obj ect class provides a method named cl one, which performs a

simple clone by copying all fields of the original object to the new object.
It works for many classes but may need to be overridden for special
purpose.

• Shallow versus deep cloning
1) Shallow cloning: a simple field by field copy. This might be wrong if it

duplicates a reference to an object that shouldn’t be shared.

publ i c c l ass I nt eger St ack i mpl ement s Cl oneabl e {
pr i vat e i nt [] buf f er ; / / a st acker of i nt eger s
pr i vat e i nt t op; / / l ar gest i ndex i n t he s t acker

/ / (st ar t i ng f r om 0)
. . .

}

or i gi nal

copy

I nt eger St acker

buf f er =
t op = 1

2 9

I nt eger St acker

buf f er =
t op = 1

Object cloning (2)Object cloning (2)
2) Deep cloning: cloning all of the objects reachable from the object on which

clone is invoked

• If you decide that a class needs deep cloning, not the default shallow
cloning, then the class must
1. Implement the Cl oneabl e interface

• Cl oneabl e interface has neither methods nor constants, but marks a class as
partaking in the cloning mechanism

2. Redefine the cl one method with the publ i c access modifier

• If you decide that a class just needs shallow cloning, you still need to
implement the Cl oneabl e interface, redefine cl one to be publ i c , and
call super . c l one()

or i gi nal

copy

I nt eger St acker

buf f er =
t op = 1

2 9

I nt eger St acker

buf f er =
t op = 1

2 9

10

Interfaces and abstract classesInterfaces and abstract classes

• Why bother introducing two concepts: abstract class and interface?
abst r act c l ass Compar abl e {

publ i c abst r act i nt compar eTo (Obj ect ot her Obj ect) ;
}
c l ass Empl oyee ext ends Compar abl e {

pul i bc i nt compar eTo(Obj ect ot her Obj ect) { . . . }
}

publ i c i nt er f ace Compar abl e {
i nt compar eTo (Obj ect ot her Obj ect)

}
c l ass Empl oyee i mpl ement s Compar abl e {

publ i c i nt compar eTo (Obj ect ot her Obj ect) { . . . }
}

• A class can only extend a single abstract class, but it can implement
as many interfaces as it wants

• An abstract class can have a partial implementation, protected parts,
static methods and so on, while interfaces are limited to public
constants and public methods with no implementation

