
1

Lecture 2:
Object Oriented Programming I

Procedural vs. Object-Oriented
Programming
� The unit in procedural programming is function, and unit

in object-oriented programming is class

� Procedural programming concentrates on creating
functions, while object-oriented programming starts from
isolating the classes, and then look for the methods
inside them.

� Procedural programming separates the data of the
program from the operations that manipulate the data,
while object-oriented programming focus on both of them

figure1: procedural figure2: object-oriented

2

Concept of Class and Object

� “Class” refers to a blueprint. It defines the
variables and methods the objects support

� “Object” is an instance of a class. Each object
has a class which defines its data and behavior

Class Members

� A class can have three kinds of members:

� fields: data variables which determine the status
of the class or an object

� methods: executable code of the class built from
statements. It allows us to manipulate/change the
status of an object or access the value of the data
member

� nested classes and nested interfaces

3

Sample class

cl ass Penci l {

publ i c St r i ng col or = “ r ed” ;

publ i c i nt l engt h;

publ i c f l oat di amet er ;

publ i c st at i c l ong next I D = 0;

publ i c voi d set Col or (St r i ng newCol or) {

col or = newCol or ;

}

}

Fields – Declaration

� Field Declaration
� a type name followed by the field name, and

optionally an initialization clause
� primitive data type vs. Object reference

� boolean, char, byte, short, int, long, float, double

� field declarations can be preceded by different
modifiers
� access control modifiers
� static

� final

4

More about field modifiers (1)

� Access control modifiers
� private: private members are accessible only in the

class itself

� package: package members are accessible in
classes in the same package and the class itself

� protected: protected members are accessible in
classes in the same package, in subclasses of the
class, and in the class itself

� public: public members are accessible anywhere the
class is accessible

publ i c cl ass Penci l {
publ i c St r i ng col or = “ r ed” ;
publ i c i nt l engt h;
publ i c f l oat di amet er ;
pr i vat e f l oat pr i ce;

publ i c st at i c l ong next I D = 0;

publ i c voi d set Pr i ce (f l oat newPr i ce) {
pr i ce = newPr i ce;

}
}

publ i c cl ass Cr eat ePenci l {
publ i c st at i c voi d mai n (St r i ng ar gs[]) {

Penci l p1 = new Penci l () ;
p1. pr i ce = 0. 5f ;

}
}

Pencil.java

CreatePencil.java

%> j avac Penci l . j ava
%> j avac Cr eat ePenci l . j ava
Cr eat ePenci l . j ava: 4: pr i ce has pr i vat e access i n Penci l

p1. pr i ce = 0. 5f ;
^

5

More about field modifiers (2)

� static

�only one copy of the static field exists, shared by all
objects of this class

�can be accessed directly in the class itself
�access from outside the class must be preceded by

the class name as follows
Syst em. out . pr i nt l n(Penci l . next I D) ;

or via an object belonging to the class

�from outside the class, non-static fields must be
accessed through an object reference

publ i c c l ass Cr eat ePenci l {
publ i c st at i c voi d mai n (St r i ng ar gs[]) {

Penci l p1 = new Penci l () ;
Penci l . next I D++;
Syst em. out . pr i nt l n(p1. next I D) ;
/ / Resul t ?

Penci l p2 = new Penci l () ;
Penci l . next I D++;
Syst em. out . pr i nt l n(p2. next I D) ;
/ / Resul t ?

Syst em. out . pr i nt l n(p1. next I D) ;

/ / Resul t ?

}
}

1

st i l l 2!

2

Note: this code is only for the purpose of showing the usage of static
fields. It has POOR design!

6

More about field modifiers (3)

� final
� once initialized, the value cannot be changed

� often be used to define named constants

� static final fields must be initialized when the class is
initialized

� non-static final fields must be initialized when an object
of the class is constructed

Fields –Initialization

� Field initialization
�not necessary to be constants, as long as with the

right type
�If no initialization, then a default initial value is

assigned depending on its type

Type Initial Value
boolean false
char ‘\u0000’
byte, short, int, long 0
float +0.0f
double +0.0
object reference null

7

Methods – Declaration

� Method declaration: two parts
1. method header

� consists of modifiers (optional), return type, method name,
parameter list and a throws clause (optional)

� types of modifiers
• access control modifiers
• abstract

� the method body is empty. E.g.
abst r act voi d sampl eMet hod() ;

• static
� represent the whole class, no a specific object
� can only access static fields and other static methods of the

same class
• final

� cannot be overridden in subclasses

2. method body

Methods – Invocation

� Method invocations
� invoked as operations on objects/classes using the

dot (.) operator

r ef er ence. met hod(ar gument s)

� static method:
�Outside of the class: “r ef er ence” can either be the class

name or an object reference belonging to the class
� Inside the class: “r ef er ence” can be ommitted

� non-static method:
� “r ef er ence” must be an object reference

8

Method - Overloading
� A class can have more than one method with the same

name as long as they have different parameter list.
publ i c c l ass Penci l {

. . .
public void setPrice (float newPrice) {

pr i ce = newPr i ce;
}

public void setPrice (Pencil p) {
pr i ce = p. get Pr i ce() ;

}
}

� How does the compiler know which method you’re
invoking? — compares the number and type of the
parameters and uses the matched one

Methods – Parameter Values
� Parameters are always passed by value.

publ i c voi d met hod1 (i nt a) {
a = 6;

}

publ i c voi d met hod2 () {
i nt b = 3;
met hod1(b) ; / / now b = ?

/ / b = 3
}

� When the parameter is an object reference, it is the
object reference, not the object itself, getting passed.

� Haven’t you said it’s past by value, not reference ?

9

cl ass PassRef {
publ i c st at i c voi d mai n(St r i ng[] ar gs) {

Penci l pl ai nPenci l = new Penci l (" PLAI N") ;
Syst em. out . pr i nt l n(" or i gi nal col or : " +

pl ai nPenci l . col or) ;

pai nt Red(pl ai nPenci l) ;

Syst em. out . pr i nt l n(" new col or : " +
pl ai nPenci l . col or) ;
}

publ i c st at i c voi d pai nt Red(Penci l p) {
p. col or = " RED" ;
p = nul l ;

}
}

another example: (parameter is an object reference)

plainPencil

plainPencil

plainPencil p

plainPencil p

color: PLAIN

- If you change any field of the object which the parameter refers to, the object is changed
for every variable which holds a reference to this object

color: PLAIN

color: RED

color: RED NULL

p

- You can change which object a parameter refers to inside a method without affecting the
original reference which is passed

- What is passed is the object reference, and it’s passed in the manner of “PASSING BY
VALUE”!

The Main Method - Concept

� main method
� the system locates and runs the main method for a

class when you run a program
� other methods get execution when called by the main

method explicitly or implicitly
� must be public, static and void

10

The Main Method - Getting Input from
the Command Line
� When running a program through the j ava command, you can

provide a list of strings as the real arguments for the mai n method.
In the mai n method, you can use ar gs[i ndex] to fetch the
corresponding argument

cl ass Gr eet i ngs {
publ i c st at i c voi d mai n (String args[]) {

St r i ng name1 = ar gs[0] ;
St r i ng name2 = ar gs[1] ;
Syst em. out . pr i nt l n(" Hel l o " + name1 + “ &“ +name2) ;

}
}

� j ava Gr eet i ngs Jacky Mar y
Hel l o Jacky & Mar y

� Note: What you get are strings! You have to convert them into other
types when needed.

Modifiers of the classes
� A class can also has modifiers

� public
� publicly accessible
� without this modifier, a class is only accessible within its own package

� abstract
� no objects of abstract classes can be created
� all of its abstract methods must be implemented by its subclass;

otherwise that subclass must be declared abst r act also

� final
� can not be subclassed

� Normally, a file can contain multiple classes, but only one public
one. The file name and the public class name should be the
same

