
1

Lecture 10

Documentation, 
Garbage Collection,
and Nested Classes/Interfaces

Documentation Comments Overview

� The Java standard APIs are shown in HTML output at 
http://java.sun.com/j2se/1.4.2/docs/api/index.html. It’s generated 
from the documentation comments (doc comments).

� Documentation comments are special comments in the source 
code that are delimited by the /** ... */ delimiters.

� The JDK contains a tool named j avadoc to generate HTML 
documentation from documentation comments in your source file. 
The j avadoc utility extracts information for the following items
� Public classes and interfaces
� Public and protected methods
� Public and protected fields

� Packages



2

Details on the Doc Comments
� Doc comments star with the three characters /** and continue until the 

next */.
� E.g / * *

*  Do what  t he i nvoker  i nt ends.  “ I nt ent i on” i s  def i ned by 
*  an anal ysi s of  past  behavi or  as descr i bed i n I SO 4074- 6
* /
publ i c  voi d dwi m( )  t hr ows I nt ent UnknownExcept i on;

� Leading * characters, and their preceding white spaces are ignored
� The first sentence of the comment is the summary for the identifier. 
� You can use most of the HTML tags in the text formatting or providing 

cross-reference links to other documentation.
� Only doc comments that IMMEDIATELY PRECEDE a class/interface, 

method, or field are processed. 
� If no doc comment is given for an inherited method, the method inherits the 

doc comments from its supertype
� If a method inherits doc comments from both a superclass and 

superinterface, the interface comment are used.

Tags in the Doc Comments

� @see: creates a cross-reference link to other javadoc documentation. 
It’s used in a “See also” section at the end of the documentation.
� Qualify the identifier sufficiently.

� specify class/interface members by using a # before the member name. If 
a method is overloaded, list its parameters.

� Specify classes/interfaces with their simple names. If a class/interface is 
from another package, specify its package name.

� Examples:
@see #get Name
@see At t r
@see com. host name. at t r . At t r
@see com. host name. at t r . At t r #get Name
@see com. host name. at t r . At t r #At t r ( St r i ng,  Obj ect )
@see com. host name. at t r . At t r #At t r ( St r i ng)
@see <a hr ef =“ spec. ht ml #at t r ” >At t r i but e Speci f i cat i on</ a>

� You can also use a label after an entity reference. The label will be the 
actual text displayed.

@see #get Name At t r i but e Names



3

Tags in the Doc Comments (cont.)
� { @l i nk} : similar to @see, but it embeds a cross reference in the 

text of your comments
� Syntax: { @l i nk package. cl ass#member [ l abel ] }

� The identifier specification follows the same requirement for @see

� Example: 
Changes t he val ue r et ur ned by cal l s t o { @l i nk #get Val ue}

� { @par am} : documents a single parameter of a method
� If you use @par amtags, you should have one for each parameter of the 

method
� Syntax: @par ampar amet er - name descr i pt i on

� Example:
@par am max The maxi mum number  of  wor ds t o be r ead

� { @r et ur n} : documents the return value of a method
� Example: 

@r et ur n The number  of  wor ds act ual l y r ead

Tags in the Doc Comments (cont.)
� @t hr ows and @except i on: documents an exception thrown by the 

method.
� If you use @t hr ows tags, you should have one for each type of 

exception the method throws. 
� Example:

@t hr ows Nul l Poi nt er Except i on The name i s <code>nul l </ code>

� @depr ecat ed: marks that an identifier should no longer be used. It 
should suggest a replacement.
� Example: 

@depr ecat ed Use <code>set Vi si bl e( t r ue) </ code>i nst ead

� @aut hor
� Only one author name per @aut hor paragraph

� @ver si on

� @si nce: denote when the tagged entity was added to your system

� Example:  Graphics.java Output Documentation

> j avadoc Gr aphi cs. j ava



4

Package Documentation
� Unlike doc comments, packages are not defined in source files.

� To generate package comments, you need to add a 
package. ht ml file in the package directory.
� The contents of the package. ht ml between <body> and </ body> will 

be read as if it were a doc comment.
� @depr ecat ed, @aut hor , and @ver si on are not used in a package 

comment

� The first sentence of the body is the summary of the package.
� Any @see and { @l i nk} tag must use the fully qualified form of the 

entity’s name, even for classes and interfaces within the package itself.

� You can also provide an overview comment for all source files by
placing a over vi ew. ht ml file in the parent directory 
� The contents between <body> and </ body> is extracted

� The comment is displayed when the user selects “ Over vi ew”

Garbage Collection

� Objects are created using new, but there is no corresponding 
del et e operation to reclaim the memory used by an object.

� The Java virtual machine used garbage collection to ensure that any 
referenced object will remain in memory, and to free up memory by 
deallocating objects that are no longer reachable from references in 
executing code.

� Garbage is collected without your intervention, but collecting 
garbage still takes time. 

� Garbage collection is not a guarantee that memory will always be
available for new objects. It solves many but not all the memory
allocation problems



5

Nested Classes and Interfaces

� Classes and interfaces can be declared inside other classes 
and interfaces, either as members or within blocks of code.

Static Nested Classes/Interfaces —
Overview

� A nested class/interface which is declared as st at i c acts just like 
any non-nested class/interface, except that its name and 
accessibility are defined by its enclosing type.

� Static nested types are members of their enclosing type
� They can access all other members of the enclosing type including the 

private ones.

� Inside a class, the static nested classes/interfaces can have private, 
package, protected or public access; while inside an interface, all the 
static nested classes/interfaces are implicitly public.

� They serve as a structuring and scoping mechanism for logically related 
types



6

Static Nested Classes/Interfaces (cont.)
� Static nested classes

� If a class is nested in an interface, it’s always static (omitted by convention)

� It can extend any other class, implement any interface and itself be 
extended by any other class to which it’s accessible

� Static nested classes serve as a mechanism for defining logically related 
types within a context where that type makes sense.

publ i c c l ass BankAccount {
pr i vat e l ong number ; / / account  number
pr i vat e l ong bal ance; / / cur r ent  bal ance

publ i c st at i c c l ass Per mi ssi ons {
publ i c bool ean canDeposi t ,  canWi t hdr aw,  canCl ose;

}
/ /  .  .  .
}

� Code outside the BankAccount class must use BankAccount . Per mi ssi ons
to refer to this class

BankAccount . Per mi ssi ons per m = acct . per mi ssi onsFor ( owner ) ;

� Nested interfaces
� Nested interfaces are always static (omitted by convention) since they don’t 

provide implementation

Non-static Classes — Inner classes
� Inner classes are associated with instances of its enclosing class.

publ i c c l ass BankAccount {
pr i vat e l ong number ; / /  account  number
pr i vat e l ong bal ance; / /  cur r ent  bal ance
pr i vat e Act i on l ast Act ; / /  l ast  act i on per f or med

publ i c c l ass Act i on {
pr i vat e St r i ng act ;
pr i vat e l ong amount ;
Act i on( St r i ng act ,  l ong amount )  {

t hi s. act = act ;
t hi s. amount = amount ;

}
publ i c St r i ng t oSt r i ng( )  {

/ / i dent i t y our  encl osi ng account
r et ur n number  + “ :  ” + act  + “ ” + amount ;

}
}

publ i c voi d deposi t ( l ong amount )  {
bal ance += amount ;
l ast Act = new Act i on( “ deposi t ” ,  amount ) ;

}

publ i c voi d wi t hdr aw( l ong amount )  {
bal ance - = amount ;
l ast Act = new Act i on( “ wi t hdr aw” ,  amount ) ;

}
/ /  .  .  .

}



7

Inner classes (cont.)
� When an inner class object is created, it MUST be associated with 

an object of its enclosing class. Usually, inner class objects are 
created inside instance methods of the enclosing class. When this 
occurs, the current enclosing object t hi s is associated with the 
inner object by default.

l ast Act = t hi s. new Act i on( “ deposi t ” ,  amount ) ;

� When deposi t creates an Act i on object, a reference to the enclosing 
BankAccount object is automatically stored in the Act i on object.

� Using the saved reference, the inner-class object can refer to the 
enclosing object’s fields directly by their names. The full name will be the 
enclosing object t hi s preceded by the enclosing class name

r et ur n BankAccount . t hi s. number + “ :  ” + act  + “ ” + amount ;

� Any enclosing object can be substituted for t hi s.

Example: suppose a new method named t r ansf er is added
publ i c  voi d t r ansf er ( Banker Account ot her ,  l ong amount )  {

ot her . wi t hdr aw( amount ) ;
deposi t ( amount ) ;
l ast Act = t hi s. new Act i on( “ t r ansf er ” ,  amount ) ;
ot her . l ast Act = ot her . new Act i on( “ t r ansf er ” ,  amount ) ;

}

Inner classes (cont.)

� The enclosing class can also access the private members of its 
inner class, but only via explicit reference to an inner class object.

� An object of the enclosing class need not have any inner class 
objects associated with it, or it could have many.

� An inner class acts as a top-level class except that it can’t have 
static members (except for final static fields).

� Inner classes can also be extended.



8

Inheritance, Scoping and Hiding

� All members declared within the enclosing class are said to be in scope
inside the inner class. 

� An inner class’s own fields and methods can hide those of the enclosing 
object. Two possible ways:
1). A member with the same name is declared in the inner class

� Any direct use of the name refers to the version inside the inner class
cl ass Host  {

i nt x;
c l ass Hel per  {

voi d i ncr ement ( )  { i nt x=0;  x++; }
} }

� Access to the enclosing object’s members needs be preceded by t hi s explicitly

2). A member with the same name is inherited by the inner class
� The direct use of the name is not allowed

cl ass Host  {
i nt x;
c l ass Hel per  ext ends Unknown {    //Unknown class has a field x

voi d i ncr ement ( )  { x++; }
}

}

� Use encl osi ngCl assName. t hi s. name to refer to the version in the outer class

� Use t hi s. name or super . name to refer to the version in the inner class

Inheritance, Scoping and Hiding (cont.)

� A method within an inner class which has the same name as an 
enclosing method hides all overloaded forms of the enclosing 
method, even if the inner class itself does not declare those 
overloaded forms.

cl ass Out er  {
voi d pr i nt ( )  { }
voi d pr i nt ( i nt val ue)  { }

c l ass I nner  {
voi d pr i nt ( )  { }
voi d show( )  {

pr i nt ( ) ;
Out er . t hi s. pr i nt ( ) ;
pr i nt ( 1) ;  / / I NVALI D:  no I nner . pr i nt ( i nt )

}
}

}



9

Local Inner Classes
� You can define inner classes in code blocks. They are called local inner 

classes. 
� They are NOT members of the class which contains the code but are local 

to that block, as a local variable.
� They are completely inaccessible outside of the block.
� Only one modifier is allowed—f i nal —which makes them unextendable
� It can access all of the f i nal variables and method parameters that are in 

scope where the class is defined.
publ i c  st at i c I t er at or wal kThr ough( f i nal Obj ect s[ ]  obj s)  {

c l ass I t er i mpl ement s I t er at or {
pr i vat e i nt pos = 0;
publ i c  bool ean hasNext ( )  {

r et ur n ( pos < obj s. l engt h) ;
}
publ i c  Oj bect next ( )  t hr ows NoSuchEl ement Except i on {

i f  ( pos >= obj s. l engt h)
t hr ow new NoSuchEl ement Except i on( ) ;

r et ur n obj s[ pos++] ;
}
publ i c  voi d r emove( )  {

t hr ow new Unsuppor t edOper at i onExcept i on( ) ;
}

}
r et ur n new I t er ( ) ;

}

Anonymous Inner Classes

� You can declare anonymous classes that extend a class or 
implement an interface.  This type of classes are defined at the
same time they are instantiated with new.

publ i c st at i c I t er at or wal kThr ough( f i nal Obj ect s [ ]  obj s)  {
r et ur n new I t er at or ( )  {

/ / same code as t hose i nsi de t he body of  t he I t er cl ass
};

}

� Anonymous classes can’t have explicit ext ends or i mpl ement s clause
� The type specified to new is the supertype of the anonymous class

� Anonymous classes can’t have explicit constructors declared



10

Nesting Inside Interfaces

� Reasons for using nested classes and interfaces inside an interface:
� Associate types that are strongly related to an interface inside that 

interface
I nt er f ace Changeabl e {

cl ass Recor d {
publ i c  Obj ect  changer ;
publ i c  St r i ng changeDesc;

}

Recor d get Last Change( ) ;
/ /  .  .  .

}

� To define a (partial or complete) default implementation for that interface. 
A class implementing the interface can choose to extend the default 
implementation or simply follow it.

� Any class or interface nested inside an interface is public and static

Modifiable Variables in Interfaces

� If you need shared, modifiable data in an interface, then an inner 
class is a simple way of achieving this:
� Declare an inner class whose fields hold the shared data
� The class’s methods provide access to the data
� Maintain a reference to an instance of that class

I nt er f ace Shar edDat a {
cl ass Dat a {

pr i vat e i nt x = 0;
publ i c  i nt get X( )  {  r et ur n x;  }
publ i c  voi d set X( i nt newX)  {  x = newX;  }

}
Dat a dat a = new Dat a( ) ;

}


