CSE 459.23 Lab3

Due November, 14 midnight (Monday)

Exercise 1: Extending HashMap

Your goal is to extend the java defined HashMap class to add the ability to store multiple objects. To do this, you will edit MultiHashMap.java to both add new methods and override two methods from HashMap.
a) (1) You need to implement four new methods (see details in the MultiHashMap.java file)
b) getAll(Object key)

c) putAll(Object key, Collection values)

d) contains(Object key, Object value)

e) remove(Object key, Object value)

(2) You need to override two methods in the HashMap class (means methods with the same signature and return type).
a) get
b) put

The external behavior of the get and put methods should be the same as in HashMap, but internally they should facilitate the ability to keep track of multiple associations. The only place where MultiHashMap should differ from HashMap externally is in its compliance with the MultiMap interface (it means that MultiHashMap should implement MultiMap).

(3) To test your implementation, compile and run the file MultiHashMapTest.java.

Read the description for each method you are supposed to implement (inside the source code of MultiHashMap.java) carefully before you start! Here is an additional example to show the expected effects of these methods:

(NOTE: the format *-*-* stands for a collection of objects. Choose an appropriate class to maintain this collection)
Suppose testObj is an object of the MultiHashMap class, and it contains no key-value pairs initially.

1) testObj.put(“A”, “red”)

this method returns NULL and now testObj contains an entry: “A” “red”
2) testObj.put(“A”, “blue”)

this method returns the string “red” and now testObj contains an entry: “A” “red”-“blue”
3) testObj.get(“A”)

this method returns the string “blue”

4) testObj.getAll(“A”)

this method returns “red”-“blue”

5) testObj.putAll(“A”, “green”-“black”-“grey”)

now testObj contains an entry: “A” “red”-“blue”-“green”-“black”-“grey”

6) testObj.get(“A”)

this method returns the string “grey”

7) testObj.contains(“A”, “green”)

this method returns TRUE

8) testObj.remove(“A”, “black”)

this method returns TRUE and now testObj contains an entry: “A” “red”-“blue”-“green”-“grey”

HINT:

1) Multiple objects can be organized inside a SINGLE object which is a member of the java collection framework.

2) Iterator can NOT guarantee the order of the objects returned from a collection. Consider how to reserve the ordering of the objects associated with a key.
Exercise 2: Sorting made easy

The class java.util.Collections (do not confuse this with the interface java.util.Collection) provides many useful static methods for use with Collections, Lists, and Sets, such as sort, and binarySearch.
In this exercise, you will utilize the Collections.sort() method on a List of your own abstract data type. Normally, Collections.sort(List) takes as argument one List of Comparable elements and modifies the List so that the elements are sorted. We wish to sort a collection RatNum objects, but RatNum does not implement the Comparable interface, so we cannot use Collections.sort.

We could simply modify the RatNum.java code, but assume that option is not available (often you will not be able to decide to modify a code because other people depend on the current version). The alternative is to call Collections.sort (List, Comparator). The Comparator is a class you implement that only needs a single method, public static int compare (Object o1, Object o2), which returns a negative number if o1 > o2, 0 if o1 == o2, and a positive number if o1 < o2.

Now the Comparator defined inside RatNumSortingTest.java simply returns 0 for its compare() method, treating all RatNums as equal values in the sorting. So your task is to modify the compare() method of RatNumSortingTest.java so that it follows the appropriate specifications of a Comparator.
Go to http://www.cse.ohio-state.edu/~xut/459.23 for .java files needed in this lab!

